Since ancient times,calligraphy and meteorology have had an inseparable relationship.Wang Xizhi s Prologue to the Collection of Poems Composed at the Orchid Pavilion records the beautiful scenery of mild wind and brig...Since ancient times,calligraphy and meteorology have had an inseparable relationship.Wang Xizhi s Prologue to the Collection of Poems Composed at the Orchid Pavilion records the beautiful scenery of mild wind and bright sun,as well as the relaxed and joyful mood of people in such weather.Su Shi s Cold Food Calligraphy Copybook records the scenery of solar terms and the author s psychological changes during these solar terms through calligraphy.The Quick Snow and Clear Time Calligraphy Copybook also reflects the grandeur of snowy days and the customs of literati recording weather and sharing it with friends.In Sun Guoting s Shupu,it is clearly stated that the third element of the"five harmony and five obedience"refers to the clear sky,humid air,and pleasant climate,and excellent climatic conditions are conducive to writing.展开更多
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de...Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.展开更多
1.Overview August 2022 marked the 17th Workshop on Antarctic Meteorology and Climate(WAMC)which was held in a hybrid format at the Pyle Center at the University of Wisconsin-Madison(UW-Madison)in Madison,WI,USA.The wo...1.Overview August 2022 marked the 17th Workshop on Antarctic Meteorology and Climate(WAMC)which was held in a hybrid format at the Pyle Center at the University of Wisconsin-Madison(UW-Madison)in Madison,WI,USA.The workshop is the first partial in-person gathering since the 14th WAMC(Lazzara et al.,2018)as the 15th WAMC was canceled due to the COVID-19 pandemic,and the 16th WAMC(Bromwich et al.,2022)was purely online.Global members of the Antarctic meteorological community gathered at this meeting to present and discuss weather-related topics encompassing scientific research and support operations within Antarctic meteorology and climate.These conversations aimed to share and discuss results,future developments,and build collaborative plans.展开更多
It is imperative to prioritize the development of agriculture and rural areas and improve the efficiency of smart meteorological services for agricultural products under the strategy of rural revitalization. In this a...It is imperative to prioritize the development of agriculture and rural areas and improve the efficiency of smart meteorological services for agricultural products under the strategy of rural revitalization. In this article, we take Mingshan tea, one of the characteristic industries in Sichuan Province, as an example to explore the related issues of smart meteorology serving agriculture. The status, value, and demand of tea smart meteorological services have been analyzed in this article. In addition, in response to the increasing demand for meteorological services in agricultural production, we have proposed to solve problem of tea meteorological service by strengthening talent, technology, product refinement, and dissemination. We have also proposed specific measures for tea intelligent meteorology to serve agriculture, in order to provide reference for future service practices. We need to continuously improve the methods and content of meteorological services, and improve the level of meteorological services. At the same time, utilizing smart meteorological service methods provides strong support for rural revitalization. This not only increases the income of tea farmers, but also maximizes the technical support role of meteorology in disaster prevention and reduction.展开更多
On September 27th,the Energy-Meteorology Synergy Development Thematic Forum of the2023 Global Energy Interconnection Conference was held in Beijing.This forum,co-hosted by Global Energy Interconnection Development and...On September 27th,the Energy-Meteorology Synergy Development Thematic Forum of the2023 Global Energy Interconnection Conference was held in Beijing.This forum,co-hosted by Global Energy Interconnection Development and Cooperation Organisation,World Meteorological Organisation and National Climate Centre.展开更多
Objective:To explore the effects of daily mean temperature(°C),average daily air pressure(hPa),humidity(%),wind speed(m/s),particulate matter(PM)2.5(μg/m3)and PM10(μg/m3)on the admission rate of chronic kidney ...Objective:To explore the effects of daily mean temperature(°C),average daily air pressure(hPa),humidity(%),wind speed(m/s),particulate matter(PM)2.5(μg/m3)and PM10(μg/m3)on the admission rate of chronic kidney disease(CKD)patients admitted to the Second Affiliated Hospital of Harbin Medical University in Harbin and to identify the indexes and lag days that impose the most critical influence.Methods:The R language Distributed Lag Nonlinear Model(DLNM),Excel,and SPSS were used to analyze the disease and meteorological data of Harbin from 01 January 2010 to 31 December 2019 according to the inclusion and exclusion criteria.Results:Meteorological factors and air pollution influence the number of hospitalizations of CKD to vary degrees in cold regions,and differ in persistence or delay.Non-optimal temperature increases the risk of admission of CKD,high temperature increases the risk of obstructive kidney disease,and low temperature increases the risk of other major types of chronic kidney disease.The greater the temperature difference is,the higher its contribution is to the risk.The non-optimal wind speed and non-optimal atmospheric pressure are associated with increased hospital admissions.PM2.5 concentrations above 40μg/m3 have a negative impact on the results.Conclusion:Cold region meteorology and specific environment do have an impact on the number of hospital admissions for chronic kidney disease,and we can apply DLMN to describe the analysis.展开更多
Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized add...Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized additive model(GAM)and spatial data analysis(SDA)methods were applied in this study to quantitatively evaluate the spatiotemporal distribution of O_(3)concentration,exposure risk,and dominant meteorological factors.Results indicated that over 40%of the cities worldwide were exposed to harmful O_(3)concentration ranges(40-60μg/m^(3)),with most cities distributed in China and India.Moreover,significant seasonal variations in global O_(3)concentrations were observed,presenting as summer(45.6μg/m^(3))>spring(47.3μg/m^(3))>autumn(38.0μg/m^(3))>winter(33.6μg/m^(3)).Exposure analysis revealed that approximately 12.2%of the population in 261 cities were exposed to an environment with high O_(3)concentrations(80-160μg/m^(3)),with about 36.32 million people in major countries.Thus,the persistent increase in high O_(3)levels worldwide is a critical factor contributing to threats to human health.Furthermore,GAM results indicated temperature,relative humidity,and wind speed as primary determinants of O_(3)variability.The synergy of meteorological factors is critical for understanding O_(3)changes.Our findings are important for enforcing robust air quality policies and mitigating public risk.展开更多
Objective:To assess the correlation between atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City.Methods:Daily data on atmospheric pollutants,meteorolog...Objective:To assess the correlation between atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City.Methods:Daily data on atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City from 2018 to 2021 were collected.The Spearman rank correlation test was used to analyze the correlation,and a distributed lag non-linear model was employed to analyze the health effects and lag impacts of environmental factors.Subgroup analyses were conducted based on sex and age.Results:According to the criteria of International Classification of Diseases(ICD-10:J00-J99),a total of 221913 cases were included,accounting for 21.3%of the total emergency department visits in Haikou City.For every 1℃increase in temperature,the risk of emergency department visits increased by 1.029%(95%CI 1.016%-1.042%).Relative humidity greater than 80%reduced the risk of visits,while higher atmospheric pressure(>1010 hpa)also decreased the likelihood of daily emergency department visits.Higher concentrations of PM2.5(30-50μg/m^(3)),PM10(>60μg/m^(3)),and O_(3)(75-125μg/m^(3))were associated with increased visits.Higher temperatures(>25℃)have a greater impact on females and children aged 0-14 years,while males are more sensitive to low atmospheric pressure.Individuals aged 65 and above exhibited increased sensitivity to O_(3)concentration,and the effects of PM2.5,PM10,and O_(3)are more pronounced in individuals over 14 years old.Conclusions:Short-term exposure to high temperatures,particulate matter pollutants(PM_(2.5)and PM_(10)),and ozone(O_(3))is associated with increased emergency department visits for respiratory diseases.展开更多
Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently opera...Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.展开更多
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat...This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.展开更多
The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate...The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.展开更多
Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analy...Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analysis and mathematical statistics.At 500 hPa,the weather situation was divided into continental high pressure type,subtropical high type and mixed type.At 850 hPa,it was divided into southwest air flow type,east air flow type and south air flow type.The correlation between meteorological element and O 3 concentration were analyzed,and factors with good correlation such as temperature,air pressure and wind speed were selected to establish regression equations.The fitting effect was good,and O 3 concentration could be objectively predicted.展开更多
Based on the monitoring data of ambient air quality and meteorological observation data,the characteristics and meteorological influencing factors of air pollution in Luojiang District of Deyang City from 2018 to 2022...Based on the monitoring data of ambient air quality and meteorological observation data,the characteristics and meteorological influencing factors of air pollution in Luojiang District of Deyang City from 2018 to 2022 were analyzed.The results show that from 2018 to 2022,the main air pollutants affecting the air quality of Luojiang District of Deyang City were PM_(2.5) and PM_(10),and the primary pollutant on heavy pollution days was basically PM_(2.5).PM_(2.5) and PM_(10) pollution showed obvious seasonal differences,and PM_(2.5) concentration exceeded the limit mainly in spring and winter,among which it was the most serious in early spring,especially in January and February,followed by December.PM_(10) exceeding the standard had a high seasonal correlation with PM_(2.5) exceeding the standard,mainly in spring and winter,among which it was the most serious in winter,especially in December,followed by January.PM_(2.5) and PM_(10) pollution showed an overall weakening trend.PM_(2.5) and PM_(10) concentration were closely related to meteorological factors such as temperature,relative humidity,wind speed,precipitation and air pressure,and were mainly affected by rainfall.展开更多
The COVID-19 pandemic has significantly changed the air pollution of the world. The present study investigated the temporal and spatial variability in air quality in Xi’an, China, and its relationship with meteorolog...The COVID-19 pandemic has significantly changed the air pollution of the world. The present study investigated the temporal and spatial variability in air quality in Xi’an, China, and its relationship with meteorological parameters during and before the COVID-19 pandemic. The outcomes of this study indicated that air pollutants, PM2.5, NO2, PM10, CO, and SO2 are likely to decrease during winter (25%, 50%, 30%, 40%, and 35%) to spring (30%, 55%, 38%, 50%, and 40%) and summer (40%, 58%, 60%, 55%, and 47%), respectively. However, the concentration of O3-8h increased by 40%, 55%, and 65% during winter, spring, and summer, respectively. The values of the air quality index decreased during the COVID-19 period. Furthermore, significant positive trends were reported in PM2.5, NO2, PM10, O3, and SO2, and no notable trends in CO during the COVID-19 pandemic. Both during and before the COVID-19 period, PM10, NO2, PM2.5, CO, and SO2 showed a negative correlation with the temperature and a moderately positive significant correlation between O3-8h and temperature. The findings of this study would help understand the air pollution circumstances in Xi’an before and during the COVID-19 period and offer helpful information regarding the implications of different air pollution control strategies.展开更多
Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and wa...Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.展开更多
The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better...The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better foundation for subsequent services.In response to the rainy weather from December 2018 to early 2019,three rounds of flood discharge were carried out in Tangpu Reservoir.During February-March in 2019,the hit rate of short-term area rainfall forecast for Tangpu Reservoir was 80.0%.Compared with the median of forecast interval,the average absolute error was 7.6 mm,and the relative error was 32.7%.The large deviation in the forecast from March 27 to 28 was deeply analyzed,and it is found that the main reasons were excessive reliance on and trust in a single model,insufficient correction of the actual situation,and insufficient judgment of the nature of precipitation.For the future reservoir meteorological service,three aspects of thinking were put forward,such as further strengthening the sharing of hydrological and meteorological information,improving the forecasting ability,and deepening the research of runoff forecast models.展开更多
In order to meet the needs of Agricultural Meteorology business and research,an edition system of agricultural meteorology short message was established based on the Microsoft Access 2000 database and visualization de...In order to meet the needs of Agricultural Meteorology business and research,an edition system of agricultural meteorology short message was established based on the Microsoft Access 2000 database and visualization developing software Visual Basic 6.0 in Liaoning Province.The basic principles of agro-meteorological text editing and system optimization ideas were pointed out.The meteorological conditions of the main crops growth needed in material library were introduced.展开更多
There has been much progress in the study of tropical cyclones and tropical meteorology in China in the past few years. A new atmospheric field experiment of tropical cyclone landfall with the acronym of CLATEX (China...There has been much progress in the study of tropical cyclones and tropical meteorology in China in the past few years. A new atmospheric field experiment of tropical cyclone landfall with the acronym of CLATEX (China Landfalling Typhoon Experiment) was implemented in July-August 2002. The boundary layer characteristics of the target typhoon Vongfong and the mesoscale structural features of other land-falling typhoons were studied. In addition, typhoon track operational forecasting errors in the last decade have been reduced because the operational monitoring equipment and forecast techniques were improved. Some results from the research program on tropical cvclone landfall, structure and intensity change, inten-sification near coastal waters, interaction between tropical cyclone and mid-latitude circulation, and the interaction among different scales of motion are described in this paper. Four major meteorological scien-tific experiments in China with international cooperation were implemented in 1998: the South China Sea monsoon field experiment (SCSMEX), the Tibetan Plateau field experiment (TIPEX), the Huaihe River basin energy and water cycle experiment (HUBEX), and the South China heavy rain scientific experiment (HUAMEX). Although these field experiments have different scientific objectives, they commonly relate to monsoon activities and they interact with each other. The valuable intensive observation data that were obtained have already been shared internationally. Some new findings have been published recently. Other research work in China, such as the tropical air-sea interaction, tropical atmospheric circulation, and weather systems, are reviewed in this paper as well. Some research results have shown that the rainfall anomalies for different regions in China were closely related to the stages of El Nino events.展开更多
After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve we...After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.展开更多
文摘Since ancient times,calligraphy and meteorology have had an inseparable relationship.Wang Xizhi s Prologue to the Collection of Poems Composed at the Orchid Pavilion records the beautiful scenery of mild wind and bright sun,as well as the relaxed and joyful mood of people in such weather.Su Shi s Cold Food Calligraphy Copybook records the scenery of solar terms and the author s psychological changes during these solar terms through calligraphy.The Quick Snow and Clear Time Calligraphy Copybook also reflects the grandeur of snowy days and the customs of literati recording weather and sharing it with friends.In Sun Guoting s Shupu,it is clearly stated that the third element of the"five harmony and five obedience"refers to the clear sky,humid air,and pleasant climate,and excellent climatic conditions are conducive to writing.
基金This work was supported by the National Key R&D Program of China[grant number 2022YFC370110]the National Natural Science Foundation of China[grant numbers 42077194,42061134008,and 42377098]+1 种基金the Shanghai International Science and Technology Partnership Project[grant number 21230780200]the Shanghai General Project[grant number 23ZR1406100].
基金supported by the China Ministry of Industry and Information Technology Foundation and Aeronautical Science Foundation of China(ASFC-201920007002)the National Key Research and Development Plan(2021YFB1600603)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China.
文摘Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.
基金Financial Support from the Office of Polar Programs, National Science Foundation (Grant Nos. NSF 1924730, 1951720, and 1951603)
文摘1.Overview August 2022 marked the 17th Workshop on Antarctic Meteorology and Climate(WAMC)which was held in a hybrid format at the Pyle Center at the University of Wisconsin-Madison(UW-Madison)in Madison,WI,USA.The workshop is the first partial in-person gathering since the 14th WAMC(Lazzara et al.,2018)as the 15th WAMC was canceled due to the COVID-19 pandemic,and the 16th WAMC(Bromwich et al.,2022)was purely online.Global members of the Antarctic meteorological community gathered at this meeting to present and discuss weather-related topics encompassing scientific research and support operations within Antarctic meteorology and climate.These conversations aimed to share and discuss results,future developments,and build collaborative plans.
文摘It is imperative to prioritize the development of agriculture and rural areas and improve the efficiency of smart meteorological services for agricultural products under the strategy of rural revitalization. In this article, we take Mingshan tea, one of the characteristic industries in Sichuan Province, as an example to explore the related issues of smart meteorology serving agriculture. The status, value, and demand of tea smart meteorological services have been analyzed in this article. In addition, in response to the increasing demand for meteorological services in agricultural production, we have proposed to solve problem of tea meteorological service by strengthening talent, technology, product refinement, and dissemination. We have also proposed specific measures for tea intelligent meteorology to serve agriculture, in order to provide reference for future service practices. We need to continuously improve the methods and content of meteorological services, and improve the level of meteorological services. At the same time, utilizing smart meteorological service methods provides strong support for rural revitalization. This not only increases the income of tea farmers, but also maximizes the technical support role of meteorology in disaster prevention and reduction.
文摘On September 27th,the Energy-Meteorology Synergy Development Thematic Forum of the2023 Global Energy Interconnection Conference was held in Beijing.This forum,co-hosted by Global Energy Interconnection Development and Cooperation Organisation,World Meteorological Organisation and National Climate Centre.
文摘Objective:To explore the effects of daily mean temperature(°C),average daily air pressure(hPa),humidity(%),wind speed(m/s),particulate matter(PM)2.5(μg/m3)and PM10(μg/m3)on the admission rate of chronic kidney disease(CKD)patients admitted to the Second Affiliated Hospital of Harbin Medical University in Harbin and to identify the indexes and lag days that impose the most critical influence.Methods:The R language Distributed Lag Nonlinear Model(DLNM),Excel,and SPSS were used to analyze the disease and meteorological data of Harbin from 01 January 2010 to 31 December 2019 according to the inclusion and exclusion criteria.Results:Meteorological factors and air pollution influence the number of hospitalizations of CKD to vary degrees in cold regions,and differ in persistence or delay.Non-optimal temperature increases the risk of admission of CKD,high temperature increases the risk of obstructive kidney disease,and low temperature increases the risk of other major types of chronic kidney disease.The greater the temperature difference is,the higher its contribution is to the risk.The non-optimal wind speed and non-optimal atmospheric pressure are associated with increased hospital admissions.PM2.5 concentrations above 40μg/m3 have a negative impact on the results.Conclusion:Cold region meteorology and specific environment do have an impact on the number of hospital admissions for chronic kidney disease,and we can apply DLMN to describe the analysis.
文摘Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized additive model(GAM)and spatial data analysis(SDA)methods were applied in this study to quantitatively evaluate the spatiotemporal distribution of O_(3)concentration,exposure risk,and dominant meteorological factors.Results indicated that over 40%of the cities worldwide were exposed to harmful O_(3)concentration ranges(40-60μg/m^(3)),with most cities distributed in China and India.Moreover,significant seasonal variations in global O_(3)concentrations were observed,presenting as summer(45.6μg/m^(3))>spring(47.3μg/m^(3))>autumn(38.0μg/m^(3))>winter(33.6μg/m^(3)).Exposure analysis revealed that approximately 12.2%of the population in 261 cities were exposed to an environment with high O_(3)concentrations(80-160μg/m^(3)),with about 36.32 million people in major countries.Thus,the persistent increase in high O_(3)levels worldwide is a critical factor contributing to threats to human health.Furthermore,GAM results indicated temperature,relative humidity,and wind speed as primary determinants of O_(3)variability.The synergy of meteorological factors is critical for understanding O_(3)changes.Our findings are important for enforcing robust air quality policies and mitigating public risk.
基金the National Natural Science Foundation of China(No:81960351)Research Foundation for Advanced Talents of Hainan(No:822RC835)Province Natural Science Key Foundation of Hainan(No:ZDYF 2019125).
文摘Objective:To assess the correlation between atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City.Methods:Daily data on atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City from 2018 to 2021 were collected.The Spearman rank correlation test was used to analyze the correlation,and a distributed lag non-linear model was employed to analyze the health effects and lag impacts of environmental factors.Subgroup analyses were conducted based on sex and age.Results:According to the criteria of International Classification of Diseases(ICD-10:J00-J99),a total of 221913 cases were included,accounting for 21.3%of the total emergency department visits in Haikou City.For every 1℃increase in temperature,the risk of emergency department visits increased by 1.029%(95%CI 1.016%-1.042%).Relative humidity greater than 80%reduced the risk of visits,while higher atmospheric pressure(>1010 hpa)also decreased the likelihood of daily emergency department visits.Higher concentrations of PM2.5(30-50μg/m^(3)),PM10(>60μg/m^(3)),and O_(3)(75-125μg/m^(3))were associated with increased visits.Higher temperatures(>25℃)have a greater impact on females and children aged 0-14 years,while males are more sensitive to low atmospheric pressure.Individuals aged 65 and above exhibited increased sensitivity to O_(3)concentration,and the effects of PM2.5,PM10,and O_(3)are more pronounced in individuals over 14 years old.Conclusions:Short-term exposure to high temperatures,particulate matter pollutants(PM_(2.5)and PM_(10)),and ozone(O_(3))is associated with increased emergency department visits for respiratory diseases.
基金Supported by National Natural Science Foundation of China(42274217)。
文摘Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.
文摘This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.
基金the Study on the Impact of the Construction and Development of Southwest Plateau Airport on the Ecological Environment(CZKY2023032).
文摘The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.
文摘Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analysis and mathematical statistics.At 500 hPa,the weather situation was divided into continental high pressure type,subtropical high type and mixed type.At 850 hPa,it was divided into southwest air flow type,east air flow type and south air flow type.The correlation between meteorological element and O 3 concentration were analyzed,and factors with good correlation such as temperature,air pressure and wind speed were selected to establish regression equations.The fitting effect was good,and O 3 concentration could be objectively predicted.
文摘Based on the monitoring data of ambient air quality and meteorological observation data,the characteristics and meteorological influencing factors of air pollution in Luojiang District of Deyang City from 2018 to 2022 were analyzed.The results show that from 2018 to 2022,the main air pollutants affecting the air quality of Luojiang District of Deyang City were PM_(2.5) and PM_(10),and the primary pollutant on heavy pollution days was basically PM_(2.5).PM_(2.5) and PM_(10) pollution showed obvious seasonal differences,and PM_(2.5) concentration exceeded the limit mainly in spring and winter,among which it was the most serious in early spring,especially in January and February,followed by December.PM_(10) exceeding the standard had a high seasonal correlation with PM_(2.5) exceeding the standard,mainly in spring and winter,among which it was the most serious in winter,especially in December,followed by January.PM_(2.5) and PM_(10) pollution showed an overall weakening trend.PM_(2.5) and PM_(10) concentration were closely related to meteorological factors such as temperature,relative humidity,wind speed,precipitation and air pressure,and were mainly affected by rainfall.
文摘The COVID-19 pandemic has significantly changed the air pollution of the world. The present study investigated the temporal and spatial variability in air quality in Xi’an, China, and its relationship with meteorological parameters during and before the COVID-19 pandemic. The outcomes of this study indicated that air pollutants, PM2.5, NO2, PM10, CO, and SO2 are likely to decrease during winter (25%, 50%, 30%, 40%, and 35%) to spring (30%, 55%, 38%, 50%, and 40%) and summer (40%, 58%, 60%, 55%, and 47%), respectively. However, the concentration of O3-8h increased by 40%, 55%, and 65% during winter, spring, and summer, respectively. The values of the air quality index decreased during the COVID-19 period. Furthermore, significant positive trends were reported in PM2.5, NO2, PM10, O3, and SO2, and no notable trends in CO during the COVID-19 pandemic. Both during and before the COVID-19 period, PM10, NO2, PM2.5, CO, and SO2 showed a negative correlation with the temperature and a moderately positive significant correlation between O3-8h and temperature. The findings of this study would help understand the air pollution circumstances in Xi’an before and during the COVID-19 period and offer helpful information regarding the implications of different air pollution control strategies.
文摘Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.
文摘The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better foundation for subsequent services.In response to the rainy weather from December 2018 to early 2019,three rounds of flood discharge were carried out in Tangpu Reservoir.During February-March in 2019,the hit rate of short-term area rainfall forecast for Tangpu Reservoir was 80.0%.Compared with the median of forecast interval,the average absolute error was 7.6 mm,and the relative error was 32.7%.The large deviation in the forecast from March 27 to 28 was deeply analyzed,and it is found that the main reasons were excessive reliance on and trust in a single model,insufficient correction of the actual situation,and insufficient judgment of the nature of precipitation.For the future reservoir meteorological service,three aspects of thinking were put forward,such as further strengthening the sharing of hydrological and meteorological information,improving the forecasting ability,and deepening the research of runoff forecast models.
基金Supported by The Innovation Team in Liaoning Meteorological Technology Service Center
文摘In order to meet the needs of Agricultural Meteorology business and research,an edition system of agricultural meteorology short message was established based on the Microsoft Access 2000 database and visualization developing software Visual Basic 6.0 in Liaoning Province.The basic principles of agro-meteorological text editing and system optimization ideas were pointed out.The meteorological conditions of the main crops growth needed in material library were introduced.
基金supported by the National Natural Science Foundation of China under Grant Nos.40175019 and 40275018the Key Project of the Ministry of Science and Technology of China under Grant No.2001DIA20026.
文摘There has been much progress in the study of tropical cyclones and tropical meteorology in China in the past few years. A new atmospheric field experiment of tropical cyclone landfall with the acronym of CLATEX (China Landfalling Typhoon Experiment) was implemented in July-August 2002. The boundary layer characteristics of the target typhoon Vongfong and the mesoscale structural features of other land-falling typhoons were studied. In addition, typhoon track operational forecasting errors in the last decade have been reduced because the operational monitoring equipment and forecast techniques were improved. Some results from the research program on tropical cvclone landfall, structure and intensity change, inten-sification near coastal waters, interaction between tropical cyclone and mid-latitude circulation, and the interaction among different scales of motion are described in this paper. Four major meteorological scien-tific experiments in China with international cooperation were implemented in 1998: the South China Sea monsoon field experiment (SCSMEX), the Tibetan Plateau field experiment (TIPEX), the Huaihe River basin energy and water cycle experiment (HUBEX), and the South China heavy rain scientific experiment (HUAMEX). Although these field experiments have different scientific objectives, they commonly relate to monsoon activities and they interact with each other. The valuable intensive observation data that were obtained have already been shared internationally. Some new findings have been published recently. Other research work in China, such as the tropical air-sea interaction, tropical atmospheric circulation, and weather systems, are reviewed in this paper as well. Some research results have shown that the rainfall anomalies for different regions in China were closely related to the stages of El Nino events.
基金supported by the NOAA (Grant Nos. NA16AOR4320115 and NA11OAR4320072)NSF (Grant No. AGS-1341878)
文摘After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.