Using field hydrological data, the relationship between the mixing of salt water and fresh water and the tidal range/ high tidal level in the Changjiang (Yangtze) River estuary is discussed, and the transporting and c...Using field hydrological data, the relationship between the mixing of salt water and fresh water and the tidal range/ high tidal level in the Changjiang (Yangtze) River estuary is discussed, and the transporting and concentrating of suspended sediment in the estuary were also analysed in respect to the circulation, flocculation and stratified interface resulting from mixing.The calculation results by two-dimentional box model have confirmed the effects of the circulation on the concentrating of suspended sediment in the estuary. The conclusions derived from this work have deepened the understanding on the mixing in the Changjiang River estuary and are of significance in bo’th theory and practice.展开更多
In order to depict the distribution of diatom fossils in surface sediments and to establish a reliable reference data for further paleoenvironmental study in the Changjiang (Yangtze) River estuary and its adjacent wat...In order to depict the distribution of diatom fossils in surface sediments and to establish a reliable reference data for further paleoenvironmental study in the Changjiang (Yangtze) River estuary and its adjacent waters, the diatom fossils from 34 surface sediment samples and their relationship with environmental variables were analyzed by principal component analysis and redundancy correspondence analysis. The diversity and abundance of diatom fossils were analyzed. Some annual average parameters of the overlying water (salinity, temperature, turbidity, dissolved oxygen, depth, dissolved inorganic nitrogen, dissolved inorganic phosphate and dissolved inorganic silicate) were measured at each sampling site. A total of 113 diatom taxa and one silicoflagellate species were identified in the investigation area. Diatom fossils were better preserved in fine sediments. The absolute abundance of diatom fossils did not significantly diff er between inshore and off shore areas, the species diversity decreased from inshore to off shore. This may be because high nutrients and low salinity promoted the growth of more brackish species in coastal waters. The diatom taxa were divided into three groups, on the basis of their response and indication to environmental changes. For example, Actinocyclus ehrenbergii and Cyclotella stylorum were dominant in coastal waters (Group 1 and Group 3) with high nutrients and low salinity;the relative abundances of Paralia sulcata and Podosira stelliger were significantly higher in off shore sites (Group 2, average 39.5%), which were characterized by high salinity and deep water. Four environmental variables (salinity, dissolved inorganic nitrogen, temperature and water depth) explained the composition and distribution of diatom taxa independently ( P< 0.05), this finding can be applied in further paleoenvironmental reconstruction research in this area.展开更多
A variety of environmental problems have been observed in the Changjiang River Estuary and adjacent coastal area, including eutrophication, harmful algal blooms(HABs), and hypoxia in recent decades. Application of s...A variety of environmental problems have been observed in the Changjiang River Estuary and adjacent coastal area, including eutrophication, harmful algal blooms(HABs), and hypoxia in recent decades. Application of sedimentary biogenic element indicators on the study of paleoenvironment can reconstruct environmental evolution history of waters. Two 210Pb-dated cores were collected from the Changjiang River Estuary(S3) and adjacent coastal area(Z13), and total organic carbon(TOC), total nitrogen(TN), biogenic silicon(BSi), total phosphorus(TP) and phosphorus(P) species were analyzed. Three stages of environmental changes are deduced by the nutrient sedimentary records. First, nutrient concentration increased rapidly since the 1950 s, which attributed to agriculture development and overused chemical fertilizers. Second, nutrient concentration kept high and primary production began to promote during the 1960 s to 1980 s, while diatom abundance and proportion began to decline since the 1970 s, accompanied by reduced 23 Si O- concentration and flux from the river. Third, due to several dams and bridges constructed, river runoff and coastal hydrodynamic conditions reduced to a certain extent since the 1990 s, which aggravated the unbalance in nutrient structure. Multi-nutrient proxies in sediment can reflect the natural environm-ental changes as well as influence of human activities.展开更多
Cultural eutrophication caused by nutrient over-enrichment in coastal waters will lead to a cascading set of ecosystem changes and deleterious ecological consequences,such as harmful algal blooms(HABs) and hypoxia.Dur...Cultural eutrophication caused by nutrient over-enrichment in coastal waters will lead to a cascading set of ecosystem changes and deleterious ecological consequences,such as harmful algal blooms(HABs) and hypoxia.During the past two decades since the late 1990s,recurrent large-scale HABs(red tides)and an extensive hypoxic zone have been reported in the coastal waters adjacent to the Changjiang River estuary.To retrieve the history of eutrophication and its associated ecosystem changes,a sediment core was collected from the "red-tide zone" adjacent to the Changjiang River estuary.The core was dated using the^(210)Pb radioisotope and examined for multiple proxies,including organic carbon(OC),total nitrogen(TN),stable isotopes of C and N,and plant pigments.An apparent up-core increase of OC content was observed after the 1970s,accompanied by a rapid increase of TN.The concurrent enrichment of δ^(13)C and increase of the C/N ratio suggested the accumulation of organic matter derived from marine primary production during this stage.The accumulation of OC after the 1970 s well reflected the significant increase of primary production in the red-tide zone and probably the intensification of hypoxia as well.Plant pigments,including chlorophyll a,p-carotene,and diatoxanthin,showed similar patterns of variation to OC throughout the core,which further confirmed the important contribution of microalgae,particularly diatoms,to the deposited organic matter.Based on the variant profiles of the pigments representative of different microalgal groups,the potential changes of the phytoplankton community since the 1970s were discussed.展开更多
Sediment transport capacity is a fundamental parameter in sediment transport theory and its accurate calculation is important from both theoretical and engineering viewpoints. The capacity of sediment transport has be...Sediment transport capacity is a fundamental parameter in sediment transport theory and its accurate calculation is important from both theoretical and engineering viewpoints. The capacity of sediment transport has been studied extensively by many researchers in the last decades. Nevertheless, the underlying mechanism behind sediment transport capacity in estuaries remains poorly understood. The current study aims to explore the impact of the river–tide interaction on sediment transport and establish a formula of sediment transport capacity under the river–tide interaction. The impact of the river–tide interaction on the hydrodynamics and sediment dynamics in the Changjiang Estuary was analyzed, a practical method for describing the variation in tide-runoff ratio was established,and a formula of sediment transport capacity considering the impact of river–tide interaction was proposed by introducing the tide-runoff ratio. The new method bridged the gap between two well-known sediment transport capacity methods by considering the variation in the index a for the gravitational term and overcomes the drawback of distinguishing flood/dry season or spring/ebb tide in the calculation of estuarine sediment transport. A large amount of flow and sediment data obtained from the Changjiang Estuary were collected to verify the proposed formula. The effect of salt-fresh water mixture and the morphological evolution on sediment transport capacity of the Changjiang Estuary were discussed.展开更多
Profles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to dete...Profles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/ma in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are respon- sible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Setting occurs at the slack water periods to cause SSC troughs and formation of a thin flufflayer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.展开更多
Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in...Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.展开更多
Harmful algal blooms(HABs) have been increasingly frequent in coastal waters around the world over the last several decades. Accelerated coastal eutrophication, resulting from the increased anthropogenic loadings of...Harmful algal blooms(HABs) have been increasingly frequent in coastal waters around the world over the last several decades. Accelerated coastal eutrophication, resulting from the increased anthropogenic loadings of nutrients, is commonly assumed to be the primary cause of this increase. However, although important,accelerated coastal eutrophication may not be the only explanation for the increasing blooms or toxic outbreaks in estuarine waters. Changes in riverine material fluxes other than nutrients, such as sediment load, may significantly affect biological activities and HAB incidence in estuarine and coastal waters. A case study off the Changjiang(Yangtze River) Estuary indicated that with the increasing riverine loadings of nutrients, the sediment load from the Changjiang River has been reduced by 70% over the past four decades. A comparison of long-term data revealed that the phytoplankton biomass maximum has expanded to a region of much lower salinity due to the drastic reduction in riverine sediment load and the subsequent improvement in light penetration in the Changjiang River plume. Furthermore, there was an apparent mirror-image relationship between the sediment load from the Changjiang River and the HAB incidence off the Changjiang Estuary over the past four decades, and the number of HAB incidents was significantly negatively correlated with the sediment load. Therefore, it is argued that the drastic decline in sediment load from the Changjiang River reduced turbidity in the Changjiang Estuary and thus contributed to the increased frequency of HABs in the buoyant discharge plumes.展开更多
To evaluate the controlling factors for coastline change of the Changjiang(Yangtze River) Estuary since 1974,we extracted the mean high tide line from multi-temporal remote sensing images that span from 1974 to 2014...To evaluate the controlling factors for coastline change of the Changjiang(Yangtze River) Estuary since 1974,we extracted the mean high tide line from multi-temporal remote sensing images that span from 1974 to 2014 at 2-year intervals.We chose 42 scenes to constrain the changing pattern of the Changjiang Estuary coastline,and implemented GIS technology to analyze the area change of the Changjiang(Yangtze) Subaerial Delta.Runoff,sediment discharge and coastal engineering were withal considered in the analysis of the coastline changes.The coastline has transgressed seaward since 1974,and a part of it presents inter-annual variations.The area of the Changjiang Subaerial Delta increased by 871 km2,with a net accretion rate of 21.8 km2/a.Based on the change of sediment discharge due to the major projects in the Changjiang River Basin,we divided the changing pattern of the coastline into three stages:the slow accretion stage(1974–1986),the moderate accretion stage(1987–2002),and the rapid accretion stage(2003–2014).Liner regression analysis illustrated that there is a significantly positive correlation between the area changes and sediment discharge in the Chongming Eastern Shoal and Jiuduansha.This suggested that sediment load has a fundamental effect on the evolution of the Changjiang Estuary.Construction of Deep Waterway in the North Passage of the Changjiang River(1998–2010) led to a rapid accretion in the Hengsha Eastern Shoal and Jiuduansha by influencing the hydrodynamics in North Passage.Coastal engineering such as reclamation and harbor construction can also change the morphology of the Changjiang Estuary.We defined a contribution rate of area change to assess the impact of reclamation on the evolution of Changjiang Estuary.It turned out that more than 45.3% of area increment of the Changjiang Estuary was attributed to reclamation.展开更多
Stable Pb isotopes in surface and core sediments were determined to identify the sources of Pb contaminants in the northern East China Sea(ECS).The Bayesian stable isotope mixing model was used to quantify the contrib...Stable Pb isotopes in surface and core sediments were determined to identify the sources of Pb contaminants in the northern East China Sea(ECS).The Bayesian stable isotope mixing model was used to quantify the contributions of Pb sources.The results show that since the late 1980 s,ratios of^(207)Pb/^(206)Pb and^(208)Pb/^(206)Pb increased in the top 34-cm sediment shown in the coastal core samples,reflecting elevated anthropogenic Pb input in coastal sea.Seaward increase of^(207)Pb/^(206)Pb and^(208)Pb/^(206)Pb ratios in surface sediments reveals that anthropogenic Pb came mainly via atmospheric transmission into the ECS.Anthropogenic sources accounted for 12.0%-21.1%of the total Pb in sediments after the 1990 s.Coal combustion was the largest anthropogenic contributor(47.5%±18.8%),and Pb mining and smelting,cement production,and vehicle exhaust/gasoline contributed 23.2%±7.1%,19.0%±13.0%,and 10.3%±6.9%,respectively.The proportions of the anthropogenic sources gradually increased while geogenic source(riverine sediment)decreased from the coast to the outer shelf.This study demonstrated that the significant influence of atmospheric input of Pb contaminants into the ECS,and also the urgent need to control coal combustion and Pb discharge from industrial dust and fume emission in China.It also highlights the promising application of the Simmr model to quantify the proportions of multiple sources of trace elements in an environment.展开更多
Based on Landsat TM images, we explored the pattern of variation of suitable waterbird habitats from 1990 to 2008 in the Dongtan area of Chongming Island at the Changjiang (Yangtze) River mouth. By applying our highly...Based on Landsat TM images, we explored the pattern of variation of suitable waterbird habitats from 1990 to 2008 in the Dongtan area of Chongming Island at the Changjiang (Yangtze) River mouth. By applying our highly accurate indicator model (R=0.999, P<0.01), we quantified the variations of fluctuation intensity for local waterbird habitats during 1990-2008, and for the main waterbird groups (Anatidae, Charadriidae, Ardeidae and Laridae) from 2006 to 2008, to evaluate the impact of habitat quantity change on the waterbird habitat status and the population dynamics of the different waterbird groups. The results show that the aquaculture ponds (AP) and the Scirpus mariqueter zone (SMZ) underwent drastic habitat changes during certain periods (AP: 1997-2000, 2000-2003, 2005-2008; SMZ: 1997-2000), and the fluctuation intensity differed among habitat types in the order AP>SMZ>TSH (total suitable habitat)>BSA (bare mud flat and shallow water area). The abandonment of tracts of aquaculture ponds in Dongtan in mid-2006 brought about an intensive population fluctuation, caused by rapidly changing habitat with the population expanding to adjacent areas. At present, Anatidae and Ardeidae are threatened in the Dongtan area with declining populations because of their very "picky" habitat requirements (i.e., high reliance on AP). The Charadriidae experienced enormous population declines in the late 1990s, however, they have since recovered to normal levels as habitat change has stabilized. Our findings suggest that the current challenges for habitat management are the protection and stabilization of AP and SMZ habitats.展开更多
Concentrations and carbon isotopic(14C,13C) compositions of black carbon(BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ra...Concentrations and carbon isotopic(14C,13C) compositions of black carbon(BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g(dry weight) ,and accounted for 5% to 26% of the sedimentary total organic carbon(TOC) pool. Among the three sediment cores collected at each site,sediment from the Changjiang River estuary had relatively high BC contents compared with the sedi-ments from the East China Sea shelf,suggesting that the Changjiang River discharge played an im-portant role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B.P.(before present) ,that is in general,3700 to 9000 years older than the 14C ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion,as well as from ancient rock weathering. Based on an isotopic mass balance model,we calculated that fossil fuel combustion contributed most(60%―80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly influence carbon cycling in the region.展开更多
文摘Using field hydrological data, the relationship between the mixing of salt water and fresh water and the tidal range/ high tidal level in the Changjiang (Yangtze) River estuary is discussed, and the transporting and concentrating of suspended sediment in the estuary were also analysed in respect to the circulation, flocculation and stratified interface resulting from mixing.The calculation results by two-dimentional box model have confirmed the effects of the circulation on the concentrating of suspended sediment in the estuary. The conclusions derived from this work have deepened the understanding on the mixing in the Changjiang River estuary and are of significance in bo’th theory and practice.
基金Supported by the National Natural Science Foundation of China(No.41506142)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1606404)the Sino-Australian Centre for Healthy Coasts of National Key Research and Development Plan(No.2016YFE0101500)
文摘In order to depict the distribution of diatom fossils in surface sediments and to establish a reliable reference data for further paleoenvironmental study in the Changjiang (Yangtze) River estuary and its adjacent waters, the diatom fossils from 34 surface sediment samples and their relationship with environmental variables were analyzed by principal component analysis and redundancy correspondence analysis. The diversity and abundance of diatom fossils were analyzed. Some annual average parameters of the overlying water (salinity, temperature, turbidity, dissolved oxygen, depth, dissolved inorganic nitrogen, dissolved inorganic phosphate and dissolved inorganic silicate) were measured at each sampling site. A total of 113 diatom taxa and one silicoflagellate species were identified in the investigation area. Diatom fossils were better preserved in fine sediments. The absolute abundance of diatom fossils did not significantly diff er between inshore and off shore areas, the species diversity decreased from inshore to off shore. This may be because high nutrients and low salinity promoted the growth of more brackish species in coastal waters. The diatom taxa were divided into three groups, on the basis of their response and indication to environmental changes. For example, Actinocyclus ehrenbergii and Cyclotella stylorum were dominant in coastal waters (Group 1 and Group 3) with high nutrients and low salinity;the relative abundances of Paralia sulcata and Podosira stelliger were significantly higher in off shore sites (Group 2, average 39.5%), which were characterized by high salinity and deep water. Four environmental variables (salinity, dissolved inorganic nitrogen, temperature and water depth) explained the composition and distribution of diatom taxa independently ( P< 0.05), this finding can be applied in further paleoenvironmental reconstruction research in this area.
基金The Environmental Protection Public Welfare Project of China under contract No.201309008the Environmental Protection Research Project of Zhejiang Province under contract No.200830
文摘A variety of environmental problems have been observed in the Changjiang River Estuary and adjacent coastal area, including eutrophication, harmful algal blooms(HABs), and hypoxia in recent decades. Application of sedimentary biogenic element indicators on the study of paleoenvironment can reconstruct environmental evolution history of waters. Two 210Pb-dated cores were collected from the Changjiang River Estuary(S3) and adjacent coastal area(Z13), and total organic carbon(TOC), total nitrogen(TN), biogenic silicon(BSi), total phosphorus(TP) and phosphorus(P) species were analyzed. Three stages of environmental changes are deduced by the nutrient sedimentary records. First, nutrient concentration increased rapidly since the 1950 s, which attributed to agriculture development and overused chemical fertilizers. Second, nutrient concentration kept high and primary production began to promote during the 1960 s to 1980 s, while diatom abundance and proportion began to decline since the 1970 s, accompanied by reduced 23 Si O- concentration and flux from the river. Third, due to several dams and bridges constructed, river runoff and coastal hydrodynamic conditions reduced to a certain extent since the 1990 s, which aggravated the unbalance in nutrient structure. Multi-nutrient proxies in sediment can reflect the natural environm-ental changes as well as influence of human activities.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB428705)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11020304)+1 种基金the National Natural Science Foundation of China(Nos.41206098,U1406403,41121064)the Open Cruise 2009 for Chinese Offshore Oceanography Research by IOCAS
文摘Cultural eutrophication caused by nutrient over-enrichment in coastal waters will lead to a cascading set of ecosystem changes and deleterious ecological consequences,such as harmful algal blooms(HABs) and hypoxia.During the past two decades since the late 1990s,recurrent large-scale HABs(red tides)and an extensive hypoxic zone have been reported in the coastal waters adjacent to the Changjiang River estuary.To retrieve the history of eutrophication and its associated ecosystem changes,a sediment core was collected from the "red-tide zone" adjacent to the Changjiang River estuary.The core was dated using the^(210)Pb radioisotope and examined for multiple proxies,including organic carbon(OC),total nitrogen(TN),stable isotopes of C and N,and plant pigments.An apparent up-core increase of OC content was observed after the 1970s,accompanied by a rapid increase of TN.The concurrent enrichment of δ^(13)C and increase of the C/N ratio suggested the accumulation of organic matter derived from marine primary production during this stage.The accumulation of OC after the 1970 s well reflected the significant increase of primary production in the red-tide zone and probably the intensification of hypoxia as well.Plant pigments,including chlorophyll a,p-carotene,and diatoxanthin,showed similar patterns of variation to OC throughout the core,which further confirmed the important contribution of microalgae,particularly diatoms,to the deposited organic matter.Based on the variant profiles of the pigments representative of different microalgal groups,the potential changes of the phytoplankton community since the 1970s were discussed.
基金financially supported by the Program of the National Key Research and Development Plan(Grant No.2017YFC0405501)the National Natural Science Foundation of China(Grant Nos.51725902 and 51579186)
文摘Sediment transport capacity is a fundamental parameter in sediment transport theory and its accurate calculation is important from both theoretical and engineering viewpoints. The capacity of sediment transport has been studied extensively by many researchers in the last decades. Nevertheless, the underlying mechanism behind sediment transport capacity in estuaries remains poorly understood. The current study aims to explore the impact of the river–tide interaction on sediment transport and establish a formula of sediment transport capacity under the river–tide interaction. The impact of the river–tide interaction on the hydrodynamics and sediment dynamics in the Changjiang Estuary was analyzed, a practical method for describing the variation in tide-runoff ratio was established,and a formula of sediment transport capacity considering the impact of river–tide interaction was proposed by introducing the tide-runoff ratio. The new method bridged the gap between two well-known sediment transport capacity methods by considering the variation in the index a for the gravitational term and overcomes the drawback of distinguishing flood/dry season or spring/ebb tide in the calculation of estuarine sediment transport. A large amount of flow and sediment data obtained from the Changjiang Estuary were collected to verify the proposed formula. The effect of salt-fresh water mixture and the morphological evolution on sediment transport capacity of the Changjiang Estuary were discussed.
基金The National Science Foundation of China under contract Nos 50939003 and 41176069the Foundation of State Key Laboratory of Estuarine and Coastal Research,East China Normal University of China under contract No.SKLEC-2012KYYW06
文摘Profles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/ma in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are respon- sible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Setting occurs at the slack water periods to cause SSC troughs and formation of a thin flufflayer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.
基金The National Natural Science Foundation of China under contract Nos 41176069 and 48505350the Major State Basic Research Development Program of China under contract No.2013CB956502
文摘Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.
基金The National Natural Science Foundation of China under contract No.41576084the Natural Science Foundation of ChinaShandong Joint Fund for Marine Ecology and Environmental Sciences under contract No.U1406403the Key Project of Fundamental Research Funds for the First Institute of Oceanography,State Oceanic Administration under contract No.GY0215G12
文摘Harmful algal blooms(HABs) have been increasingly frequent in coastal waters around the world over the last several decades. Accelerated coastal eutrophication, resulting from the increased anthropogenic loadings of nutrients, is commonly assumed to be the primary cause of this increase. However, although important,accelerated coastal eutrophication may not be the only explanation for the increasing blooms or toxic outbreaks in estuarine waters. Changes in riverine material fluxes other than nutrients, such as sediment load, may significantly affect biological activities and HAB incidence in estuarine and coastal waters. A case study off the Changjiang(Yangtze River) Estuary indicated that with the increasing riverine loadings of nutrients, the sediment load from the Changjiang River has been reduced by 70% over the past four decades. A comparison of long-term data revealed that the phytoplankton biomass maximum has expanded to a region of much lower salinity due to the drastic reduction in riverine sediment load and the subsequent improvement in light penetration in the Changjiang River plume. Furthermore, there was an apparent mirror-image relationship between the sediment load from the Changjiang River and the HAB incidence off the Changjiang Estuary over the past four decades, and the number of HAB incidents was significantly negatively correlated with the sediment load. Therefore, it is argued that the drastic decline in sediment load from the Changjiang River reduced turbidity in the Changjiang Estuary and thus contributed to the increased frequency of HABs in the buoyant discharge plumes.
文摘To evaluate the controlling factors for coastline change of the Changjiang(Yangtze River) Estuary since 1974,we extracted the mean high tide line from multi-temporal remote sensing images that span from 1974 to 2014 at 2-year intervals.We chose 42 scenes to constrain the changing pattern of the Changjiang Estuary coastline,and implemented GIS technology to analyze the area change of the Changjiang(Yangtze) Subaerial Delta.Runoff,sediment discharge and coastal engineering were withal considered in the analysis of the coastline changes.The coastline has transgressed seaward since 1974,and a part of it presents inter-annual variations.The area of the Changjiang Subaerial Delta increased by 871 km2,with a net accretion rate of 21.8 km2/a.Based on the change of sediment discharge due to the major projects in the Changjiang River Basin,we divided the changing pattern of the coastline into three stages:the slow accretion stage(1974–1986),the moderate accretion stage(1987–2002),and the rapid accretion stage(2003–2014).Liner regression analysis illustrated that there is a significantly positive correlation between the area changes and sediment discharge in the Chongming Eastern Shoal and Jiuduansha.This suggested that sediment load has a fundamental effect on the evolution of the Changjiang Estuary.Construction of Deep Waterway in the North Passage of the Changjiang River(1998–2010) led to a rapid accretion in the Hengsha Eastern Shoal and Jiuduansha by influencing the hydrodynamics in North Passage.Coastal engineering such as reclamation and harbor construction can also change the morphology of the Changjiang Estuary.We defined a contribution rate of area change to assess the impact of reclamation on the evolution of Changjiang Estuary.It turned out that more than 45.3% of area increment of the Changjiang Estuary was attributed to reclamation.
基金the Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences(No.KLMEES201805)the National Natural Science Foundation of China(No.41406087)the"First Class Fishery Discipline"Program in Shandong Province,China。
文摘Stable Pb isotopes in surface and core sediments were determined to identify the sources of Pb contaminants in the northern East China Sea(ECS).The Bayesian stable isotope mixing model was used to quantify the contributions of Pb sources.The results show that since the late 1980 s,ratios of^(207)Pb/^(206)Pb and^(208)Pb/^(206)Pb increased in the top 34-cm sediment shown in the coastal core samples,reflecting elevated anthropogenic Pb input in coastal sea.Seaward increase of^(207)Pb/^(206)Pb and^(208)Pb/^(206)Pb ratios in surface sediments reveals that anthropogenic Pb came mainly via atmospheric transmission into the ECS.Anthropogenic sources accounted for 12.0%-21.1%of the total Pb in sediments after the 1990 s.Coal combustion was the largest anthropogenic contributor(47.5%±18.8%),and Pb mining and smelting,cement production,and vehicle exhaust/gasoline contributed 23.2%±7.1%,19.0%±13.0%,and 10.3%±6.9%,respectively.The proportions of the anthropogenic sources gradually increased while geogenic source(riverine sediment)decreased from the coast to the outer shelf.This study demonstrated that the significant influence of atmospheric input of Pb contaminants into the ECS,and also the urgent need to control coal combustion and Pb discharge from industrial dust and fume emission in China.It also highlights the promising application of the Simmr model to quantify the proportions of multiple sources of trace elements in an environment.
基金Supported by the National Basic Research Program of China (973 Program) (Nos. 2010CB951204, 2008DFB90240)the National Special Research Fund for Non-Profit Sector (Marine) (No. 200805080)
文摘Based on Landsat TM images, we explored the pattern of variation of suitable waterbird habitats from 1990 to 2008 in the Dongtan area of Chongming Island at the Changjiang (Yangtze) River mouth. By applying our highly accurate indicator model (R=0.999, P<0.01), we quantified the variations of fluctuation intensity for local waterbird habitats during 1990-2008, and for the main waterbird groups (Anatidae, Charadriidae, Ardeidae and Laridae) from 2006 to 2008, to evaluate the impact of habitat quantity change on the waterbird habitat status and the population dynamics of the different waterbird groups. The results show that the aquaculture ponds (AP) and the Scirpus mariqueter zone (SMZ) underwent drastic habitat changes during certain periods (AP: 1997-2000, 2000-2003, 2005-2008; SMZ: 1997-2000), and the fluctuation intensity differed among habitat types in the order AP>SMZ>TSH (total suitable habitat)>BSA (bare mud flat and shallow water area). The abandonment of tracts of aquaculture ponds in Dongtan in mid-2006 brought about an intensive population fluctuation, caused by rapidly changing habitat with the population expanding to adjacent areas. At present, Anatidae and Ardeidae are threatened in the Dongtan area with declining populations because of their very "picky" habitat requirements (i.e., high reliance on AP). The Charadriidae experienced enormous population declines in the late 1990s, however, they have since recovered to normal levels as habitat change has stabilized. Our findings suggest that the current challenges for habitat management are the protection and stabilization of AP and SMZ habitats.
基金Supported by the National Natural Science Foundation of China (Grant No. 40576039)
文摘Concentrations and carbon isotopic(14C,13C) compositions of black carbon(BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g(dry weight) ,and accounted for 5% to 26% of the sedimentary total organic carbon(TOC) pool. Among the three sediment cores collected at each site,sediment from the Changjiang River estuary had relatively high BC contents compared with the sedi-ments from the East China Sea shelf,suggesting that the Changjiang River discharge played an im-portant role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B.P.(before present) ,that is in general,3700 to 9000 years older than the 14C ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion,as well as from ancient rock weathering. Based on an isotopic mass balance model,we calculated that fossil fuel combustion contributed most(60%―80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly influence carbon cycling in the region.