Ni-Cu/ZrO2-CeO2-Al2O3 catalysts were prepared by co-precipitation method at pH=9 and using Na2CO3 as the precipitant. The Ni loading (mass fraction) of the catalysts was 10%. The catalysts were characterized by X-ra...Ni-Cu/ZrO2-CeO2-Al2O3 catalysts were prepared by co-precipitation method at pH=9 and using Na2CO3 as the precipitant. The Ni loading (mass fraction) of the catalysts was 10%. The catalysts were characterized by X-ray diffraction, temperature-programmed oxidation (TPO), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The effects of calcined temperature of support on coke deposition were studied. TPO, SEM and XPS results indicated there was no peak of higher temperature oxygen consumption on Ni-Cu/ZrO2-CeO2-Al2O3 catalyst (support was calcined at 800 ℃), which could lead to the deactivation of the catalyst. The carbon species were carbonate and inactive carbon (filamentous carbon species) on the surface of catalyst reacting for 40 h which perhaps led to the deactivation of the catalyst.展开更多
The deactivation mechanism of Co/MgO catalyst for the reforming of methane with carbon dioxide was investigated. The conversion of CH4 displayed a significant decrease in the initial stage caused by carbon deposition....The deactivation mechanism of Co/MgO catalyst for the reforming of methane with carbon dioxide was investigated. The conversion of CH4 displayed a significant decrease in the initial stage caused by carbon deposition.There were two types of cokes, carbon nanotubes(CNTs) and carbon nano-onions(CNOs). The number of the CNO layers that coated on the surface of Co nanoparticles(NPs) increased rapidly in the initial reforming time,which was responsible for the deactivation of the Co/MgO catalyst. The deposition of CNOs was attributed to the oxidation of Co NPs. Therefore, the deactivation of the Co/MgO catalyst was originated from the first oxidization of the Co NPs into Co3 O4 by O species(OH intermediate, CO_2, H2 O) during the reforming reaction,which accelerates the formation of coke that blocked the active metal, thus led to catalyst deactivation.展开更多
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o...The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
In this paper, the properties of carbon deposited on hexaaluminateLaNiAl_(11)O_(19) catalyst were characterized by X-ray photoelectron spectroscopy (XPS), and in themeantime, the amount of carbon deposited on the cata...In this paper, the properties of carbon deposited on hexaaluminateLaNiAl_(11)O_(19) catalyst were characterized by X-ray photoelectron spectroscopy (XPS), and in themeantime, the amount of carbon deposited on the catalyst, after both CH_4 decomposition and CO_2reforming of CH_4, was determined by means of thermogravimetric analysis (TGA), respectively. Therates of carbon deposited on the catalyst were also investigated and the apparent kinetic equationof CO_2 reforming of CH_4: ν_c = kp^(0.72)(CH_4)·p^(-0.55)(CO_2), was established by analyzing therelation between the rates of deposited carbon and the pressure ratio of CH_4 and CO_2.展开更多
Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were per...Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.展开更多
CO_2 reforming of CH_4 over nickel-based catalysts was investigated by using a fixed-bed reactor. Catalytic activity and amount of carbon deposition effects by nickel loading content, rare earth promoter and promoter ...CO_2 reforming of CH_4 over nickel-based catalysts was investigated by using a fixed-bed reactor. Catalytic activity and amount of carbon deposition effects by nickel loading content, rare earth promoter and promoter contents were evaluated. It is found that nickel loading as well as reaction temperature can influence the activity and carbon deposition amounts,and with the addition of rare earth promoter, it can greatly improve the catalytic activity and exert a strong effect on the anticoking performance of the catalysts. The 5.0%(mass fraction)Ni-0.75%La-BaTiO_3 catalyst shows great resistance to coke formation and higher thermal stability as well as the catalytic activity.展开更多
To improve the‘detonation-supporting’performance of fuel-rich catalytic combustion products,DBD plasma,stimulated by adjustable nanosecond pulse power supply,was used to further regulate the components and concentra...To improve the‘detonation-supporting’performance of fuel-rich catalytic combustion products,DBD plasma,stimulated by adjustable nanosecond pulse power supply,was used to further regulate the components and concentrations of the hydrocarbon blends.In this paper,the parameters including load voltage,frequency,rising(falling)edge,pulse width and feeding flow rate were changed respectively,and the corresponding concentration and proportion change of the components in blend gas were investigated.According to the experiment result,it was found that when the discharge frequency is low,the plasma mainly promotes the transformation of light gaseous substances,while it mainly promotes the conversion to heavy hydrocarbons when the frequency is larger.Increasing load voltage will strengthen this trend.The controlling and reforming effect of plasma on the blend gas will decrease with the increase of voltage rising(falling)edge and the feeding flow rate.The regulation effect will be strengthened with the increase of pulse width under 200 ns.With the increase of discharge intensity,the‘carbon’settles on the walls of the reactor,which will change the dielectric constant,leading to the loss of control of the discharge.展开更多
The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The ...The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.展开更多
The Ni/Mo/SBA-15 catalyst was modified by La2O3 in order to improve its thermal stability and carbon deposition resistance during the CO2 reforming of methane to syngas. The catalytic performance, thermal stability, s...The Ni/Mo/SBA-15 catalyst was modified by La2O3 in order to improve its thermal stability and carbon deposition resistance during the CO2 reforming of methane to syngas. The catalytic performance, thermal stability, structure, dispersion of nickel and carbon deposition of the modified and unmodified catalysts were comparatively investigated by many characterization techniques such as N2 adsorption, H2-TPR, CO2-TPD, XRD, FT-IR and SEM. It was found that the major role of La2O3 additive was to improve the pore structure and inhibit carbon deposition on the catalyst surface. The La2O3 modified Ni/Mo/SBA-15 catalyst possessed a mesoporous structure and high surface area. The high surface area of the La2O3 modified catalysts resulted in strong interaction between Ni and Mo-La, which improved the dispersion of Ni, and retarded the sintering of Ni during the CO2 reforming process. The reaction evaluation results also showed that the La2O3 modified Ni/Mo/SBA-15 catalysts exhibited high stability.展开更多
ZrO 2-Al 2O 3 composite oxides and supported Ni catalysts were prepared, and characterized by N 2 adsorption /desorption, X-ray diffraction(XRD) an d X-ray photoelectron spectroscopy(XPS) techniques. The catalytic...ZrO 2-Al 2O 3 composite oxides and supported Ni catalysts were prepared, and characterized by N 2 adsorption /desorption, X-ray diffraction(XRD) an d X-ray photoelectron spectroscopy(XPS) techniques. The catalytic performance and carbon deposition was also investigated. This mesoporous composite oxide is shown to be a promising catalyst support. An increase in the catalytic activity and stability of methane and carbon dioxide reforming reaction was resulted from the zirconia addition, especially at 5wt% ZrO 2 content. The Ni catalyst supported ZrO 2-Al 2O 3 has a strong resistance to sintering and the carbon deposition in a relatively long-term reaction.展开更多
To gain deep insight into the Morphological effect of NixMg1-xO catalysts on the reaction of CO2reforming with methane, we designed and fabricated three different spatial structural NixMg1-xO catalysts.These NixMg1-xO...To gain deep insight into the Morphological effect of NixMg1-xO catalysts on the reaction of CO2reforming with methane, we designed and fabricated three different spatial structural NixMg1-xO catalysts.These NixMg1-xO catalysts with specific models such as rod, sheet and sphere, exhibited various activity and stability in CO2reforming reaction. Herein NixMg1-xO nanorods displayed higher catalytic activity, in which methane conversion was up to 72% and CO2conversion was 64% at 670°C with a space velocity of 79,200 mL/(gcath), compared with nanosheet and nanosphere counterparts. Furthermore, both catalysts of NixMg1-xO nanorod and nanosheet showed a high resistance toward coke deposition and sintering of active sites in the process of CO2reforming of methane.展开更多
Alumina-supported bimetallic cobalt-nickel catalyst has been prepared and employed in a fixed-bed reactor for the direct production of synthesis gas from glycerol steam reforming. Physicochemical properties of the 5Co...Alumina-supported bimetallic cobalt-nickel catalyst has been prepared and employed in a fixed-bed reactor for the direct production of synthesis gas from glycerol steam reforming. Physicochemical properties of the 5Co-10Ni/85Al2O3 catalyst were determined from N2-physisorption, H2-chemisorption, CO2 and NH3-temperature-programmed desorption measurements as well as X-ray diffraction analysis. Both weak and strong acid sites are present on the catalyst surface. The acidic:basic ratio is about 7. Carbon deposition was evident at 923 K;addition of H2 however has managed to reduce the carbon deposition. Significantly, this has resulted in the increment of CH4 formation rate, consistent with the increased carbon gasification and methanation. Carbon deposition was almost non-existent, particularly at 1023 K. In addition, the inclusion of hydrogen also has contributed to the decrease of CO2 and increase of CO formation rates. This was attributed to the reverse water-gas-shift reaction. Overall, both the CO2:CO and CO2:CH4 ratios decrease with the hydrogen partial pressure.展开更多
文摘Ni-Cu/ZrO2-CeO2-Al2O3 catalysts were prepared by co-precipitation method at pH=9 and using Na2CO3 as the precipitant. The Ni loading (mass fraction) of the catalysts was 10%. The catalysts were characterized by X-ray diffraction, temperature-programmed oxidation (TPO), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The effects of calcined temperature of support on coke deposition were studied. TPO, SEM and XPS results indicated there was no peak of higher temperature oxygen consumption on Ni-Cu/ZrO2-CeO2-Al2O3 catalyst (support was calcined at 800 ℃), which could lead to the deactivation of the catalyst. The carbon species were carbonate and inactive carbon (filamentous carbon species) on the surface of catalyst reacting for 40 h which perhaps led to the deactivation of the catalyst.
基金Supported by the National Natural Science Foundation of China(21736010,U1462128,91334108)the State Key Development Program for Basic Research of China(2015CB251402)
文摘The deactivation mechanism of Co/MgO catalyst for the reforming of methane with carbon dioxide was investigated. The conversion of CH4 displayed a significant decrease in the initial stage caused by carbon deposition.There were two types of cokes, carbon nanotubes(CNTs) and carbon nano-onions(CNOs). The number of the CNO layers that coated on the surface of Co nanoparticles(NPs) increased rapidly in the initial reforming time,which was responsible for the deactivation of the Co/MgO catalyst. The deposition of CNOs was attributed to the oxidation of Co NPs. Therefore, the deactivation of the Co/MgO catalyst was originated from the first oxidization of the Co NPs into Co3 O4 by O species(OH intermediate, CO_2, H2 O) during the reforming reaction,which accelerates the formation of coke that blocked the active metal, thus led to catalyst deactivation.
基金supported by the National Natural Science Fundation of China(U1361202,51276120)~~
文摘The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘In this paper, the properties of carbon deposited on hexaaluminateLaNiAl_(11)O_(19) catalyst were characterized by X-ray photoelectron spectroscopy (XPS), and in themeantime, the amount of carbon deposited on the catalyst, after both CH_4 decomposition and CO_2reforming of CH_4, was determined by means of thermogravimetric analysis (TGA), respectively. Therates of carbon deposited on the catalyst were also investigated and the apparent kinetic equationof CO_2 reforming of CH_4: ν_c = kp^(0.72)(CH_4)·p^(-0.55)(CO_2), was established by analyzing therelation between the rates of deposited carbon and the pressure ratio of CH_4 and CO_2.
基金supported by University of Kashan(Grant No.158426/5)
文摘Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.
文摘CO_2 reforming of CH_4 over nickel-based catalysts was investigated by using a fixed-bed reactor. Catalytic activity and amount of carbon deposition effects by nickel loading content, rare earth promoter and promoter contents were evaluated. It is found that nickel loading as well as reaction temperature can influence the activity and carbon deposition amounts,and with the addition of rare earth promoter, it can greatly improve the catalytic activity and exert a strong effect on the anticoking performance of the catalysts. The 5.0%(mass fraction)Ni-0.75%La-BaTiO_3 catalyst shows great resistance to coke formation and higher thermal stability as well as the catalytic activity.
基金supported by National Natural Science Foundation of China(Nos.91941105,91941301,51790511)。
文摘To improve the‘detonation-supporting’performance of fuel-rich catalytic combustion products,DBD plasma,stimulated by adjustable nanosecond pulse power supply,was used to further regulate the components and concentrations of the hydrocarbon blends.In this paper,the parameters including load voltage,frequency,rising(falling)edge,pulse width and feeding flow rate were changed respectively,and the corresponding concentration and proportion change of the components in blend gas were investigated.According to the experiment result,it was found that when the discharge frequency is low,the plasma mainly promotes the transformation of light gaseous substances,while it mainly promotes the conversion to heavy hydrocarbons when the frequency is larger.Increasing load voltage will strengthen this trend.The controlling and reforming effect of plasma on the blend gas will decrease with the increase of voltage rising(falling)edge and the feeding flow rate.The regulation effect will be strengthened with the increase of pulse width under 200 ns.With the increase of discharge intensity,the‘carbon’settles on the walls of the reactor,which will change the dielectric constant,leading to the loss of control of the discharge.
基金the Deanship of Scientific Research at KSU for funding the work through the research group Project # RGP-VPP119
文摘The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.
基金supported by the Key Project of Chinese National Programs for Fundamental Research and Development(973 Program 2005CB221204)the Natural Science Fund of China(20676087)
文摘The Ni/Mo/SBA-15 catalyst was modified by La2O3 in order to improve its thermal stability and carbon deposition resistance during the CO2 reforming of methane to syngas. The catalytic performance, thermal stability, structure, dispersion of nickel and carbon deposition of the modified and unmodified catalysts were comparatively investigated by many characterization techniques such as N2 adsorption, H2-TPR, CO2-TPD, XRD, FT-IR and SEM. It was found that the major role of La2O3 additive was to improve the pore structure and inhibit carbon deposition on the catalyst surface. The La2O3 modified Ni/Mo/SBA-15 catalyst possessed a mesoporous structure and high surface area. The high surface area of the La2O3 modified catalysts resulted in strong interaction between Ni and Mo-La, which improved the dispersion of Ni, and retarded the sintering of Ni during the CO2 reforming process. The reaction evaluation results also showed that the La2O3 modified Ni/Mo/SBA-15 catalysts exhibited high stability.
文摘ZrO 2-Al 2O 3 composite oxides and supported Ni catalysts were prepared, and characterized by N 2 adsorption /desorption, X-ray diffraction(XRD) an d X-ray photoelectron spectroscopy(XPS) techniques. The catalytic performance and carbon deposition was also investigated. This mesoporous composite oxide is shown to be a promising catalyst support. An increase in the catalytic activity and stability of methane and carbon dioxide reforming reaction was resulted from the zirconia addition, especially at 5wt% ZrO 2 content. The Ni catalyst supported ZrO 2-Al 2O 3 has a strong resistance to sintering and the carbon deposition in a relatively long-term reaction.
基金financial support by the National Natural Science Foundation of China (21273151)China Ministry of Science and Technology (2016YFA0202802)Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07040200)
文摘To gain deep insight into the Morphological effect of NixMg1-xO catalysts on the reaction of CO2reforming with methane, we designed and fabricated three different spatial structural NixMg1-xO catalysts.These NixMg1-xO catalysts with specific models such as rod, sheet and sphere, exhibited various activity and stability in CO2reforming reaction. Herein NixMg1-xO nanorods displayed higher catalytic activity, in which methane conversion was up to 72% and CO2conversion was 64% at 670°C with a space velocity of 79,200 mL/(gcath), compared with nanosheet and nanosphere counterparts. Furthermore, both catalysts of NixMg1-xO nanorod and nanosheet showed a high resistance toward coke deposition and sintering of active sites in the process of CO2reforming of methane.
文摘Alumina-supported bimetallic cobalt-nickel catalyst has been prepared and employed in a fixed-bed reactor for the direct production of synthesis gas from glycerol steam reforming. Physicochemical properties of the 5Co-10Ni/85Al2O3 catalyst were determined from N2-physisorption, H2-chemisorption, CO2 and NH3-temperature-programmed desorption measurements as well as X-ray diffraction analysis. Both weak and strong acid sites are present on the catalyst surface. The acidic:basic ratio is about 7. Carbon deposition was evident at 923 K;addition of H2 however has managed to reduce the carbon deposition. Significantly, this has resulted in the increment of CH4 formation rate, consistent with the increased carbon gasification and methanation. Carbon deposition was almost non-existent, particularly at 1023 K. In addition, the inclusion of hydrogen also has contributed to the decrease of CO2 and increase of CO formation rates. This was attributed to the reverse water-gas-shift reaction. Overall, both the CO2:CO and CO2:CH4 ratios decrease with the hydrogen partial pressure.