[ Objective] This study aimed to investigate the differences in morphological characteristics of Dendrobium officinale plantlets propagated from different explants. [ Method] Randomly 1 000 D. offtcinale plantlets pro...[ Objective] This study aimed to investigate the differences in morphological characteristics of Dendrobium officinale plantlets propagated from different explants. [ Method] Randomly 1 000 D. offtcinale plantlets propagated via different regeneration pathways were selected for morphological investigation and classification. [ Result] D. officinale plantlets propagated from stem segment explants exhibited highly consistent morphological characteristics, while those propagated from seed explants exhibited a variety of morphological characteristics. [ Conclusion] Therefore, using seed explants for regeneration can effectively broaden the germplasms resources of D. officinale.展开更多
Robust genome editing technologies are becoming part of the crop breeding toolbox.Currently,genome editing is usually conducted either at a single locus,or multiple loci,in a variety at one time.Massively parallel gen...Robust genome editing technologies are becoming part of the crop breeding toolbox.Currently,genome editing is usually conducted either at a single locus,or multiple loci,in a variety at one time.Massively parallel genomics platforms,multifaceted genome editing capabilities,and flexible transformation systems enable targeted variation at nearly any locus,across the spectrum of genotypes within a species.We demonstrate here the simultaneous transformation and editing of many genotypes,by targeting mixed seed embryo explants with genome editing machinery,followed by re-identification through genotyping after plant regeneration.Transformation and Editing of Mixed Lines(TREDMIL)produced transformed individuals representing 101 of 104(97%)mixed elite genotypes in soybean;and 22 of 40(55%)and 9 of 36(25%)mixed maize female and male elite inbred genotypes,respectively.Characterization of edited genotypes for the regenerated individuals identified over 800 distinct edits at the Determinate1(Dt1)locus in samples from 101 soybean genotypes and 95 distinct Brown midrib3(Bm3)edits in samples from 17 maize genotypes.These results illustrate how TREDMIL can help accelerate the development and deployment of customized crop varieties for future precision breeding.展开更多
基金Supported by of Spark Program of Guangdong Department of Science and Technology"Development of Cultivation Techniques of Dendrobium officinale Seedlings"(2013B020503062)Special Innovation Fund for Small and Medium Enterprise in Maoming City"Research and Demonstration of Alpine Organic Efficient Cultivation Technology of Precious Chinese Herb Dendrobium officinale"(2012B01088)
文摘[ Objective] This study aimed to investigate the differences in morphological characteristics of Dendrobium officinale plantlets propagated from different explants. [ Method] Randomly 1 000 D. offtcinale plantlets propagated via different regeneration pathways were selected for morphological investigation and classification. [ Result] D. officinale plantlets propagated from stem segment explants exhibited highly consistent morphological characteristics, while those propagated from seed explants exhibited a variety of morphological characteristics. [ Conclusion] Therefore, using seed explants for regeneration can effectively broaden the germplasms resources of D. officinale.
文摘Robust genome editing technologies are becoming part of the crop breeding toolbox.Currently,genome editing is usually conducted either at a single locus,or multiple loci,in a variety at one time.Massively parallel genomics platforms,multifaceted genome editing capabilities,and flexible transformation systems enable targeted variation at nearly any locus,across the spectrum of genotypes within a species.We demonstrate here the simultaneous transformation and editing of many genotypes,by targeting mixed seed embryo explants with genome editing machinery,followed by re-identification through genotyping after plant regeneration.Transformation and Editing of Mixed Lines(TREDMIL)produced transformed individuals representing 101 of 104(97%)mixed elite genotypes in soybean;and 22 of 40(55%)and 9 of 36(25%)mixed maize female and male elite inbred genotypes,respectively.Characterization of edited genotypes for the regenerated individuals identified over 800 distinct edits at the Determinate1(Dt1)locus in samples from 101 soybean genotypes and 95 distinct Brown midrib3(Bm3)edits in samples from 17 maize genotypes.These results illustrate how TREDMIL can help accelerate the development and deployment of customized crop varieties for future precision breeding.