期刊文献+
共找到26,359篇文章
< 1 2 250 >
每页显示 20 50 100
Growth,leaf anatomy,and photosynthesis of cotton(Gossypium hirsutum L.)seedlings in response to four light-emitting diodes and high pressure sodium lamp 被引量:1
1
作者 ZHANG Yichi LIAO Baopeng +3 位作者 LI Fangjun ENEJI AEgrinya DU Mingwei TIAN Xiaoli 《Journal of Cotton Research》 CAS 2024年第1期79-89,共11页
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp... Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage. 展开更多
关键词 Cotton seedling Light-emitting diodes BIOMASS Palisade cell PHOTOSYNTHESIS
下载PDF
Bio-Fertilizer Improved Oil Palm Seedling Growth
2
作者 Gabriel Ddamulira F. Masika +2 位作者 A. Asiimwe L. Zubairi M. Otuba 《American Journal of Plant Sciences》 CAS 2024年第7期455-466,共12页
In most farming systems newly introduced commercial fertilizers to be accepted, adopted and used by farmers, their effectiveness and appropriate application rates must be exhibited. This study was conducted to validat... In most farming systems newly introduced commercial fertilizers to be accepted, adopted and used by farmers, their effectiveness and appropriate application rates must be exhibited. This study was conducted to validate the effect and rates of a bio-fertilizer (super agric) on oil palm seedling growth. The trial was laid out in a randomized complete block design (RCBD) with three application rates of 0, 4 and 8 ml/L of water (treatments) replicated thrice. Following the application of super agric to oil palm seedlings for a period of six months, observations drawn from the analysis of growth data were as follows: Three months after treatment, super agric significantly (P < 0.05) increased the height and breadth of oil palm seedling compared to those which were not applied with super agric. The results also showed that when super agric was applied at a rate of 4 ml/L, the leaf length and breadth were higher compared to the control were super agric was not used. Furthermore, applications of super agric improved oil palm seedling nitrogen uptake by 31% in treatment groups as compared to the control which explained the height and breadth increase in the oil palm seedlings that were applied with super agric. On the other hand, the effect of super agric application on phosphorus uptake by seedlings was not significant. Although the height, breadth, leaf width and length were all significantly affected by super agric application, the number of oil palm leaves and spears were not affected for the period the experiment was conducted. Six months after application of super agric the growth of oil palm seedlings was favorably impacted, hence we recommend super agric to be promoted among oil palm seedling growers. 展开更多
关键词 BIO-FERTILIZER seedling GROWTH APPLICATION Rates Super Agric
下载PDF
Effects of site preparation methods on soil physical properties and outplanting success of coniferous seedlings in boreal forests
3
作者 Aleksey S.Ilintsev Elena N.Nakvasina Alexander P.Bogdanov 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期70-80,共11页
This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites ... This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites in taiga forests of the European part of Russia.A total of 54 plots were set up to assess seedling survival;root collar diameter,height,and heigh increment were measured for 240 seedlings to assess growth.In the rooting layer,240 soil samples were taken to determine physical properties.The study showed that soil treatment methods had no effect on bulk density and total porosity in Cladina sites.However,reduced soil moisture was noted,particularly in mounds,resulting in increased aeration.In Myrtillus sites,there were increased bulk density,reduced soil moisture,and total porosity in the mounds.Mounding treatment in Polytrichum sites resulted in reduced soil moisture and increased aeration porosity.In the Myrtillus and Polytrichum sites,patch scarification had no effects on physical properties.In Polytrichum sites,survival rates,heights,and heigh increments of bareroot Norway spruce seedlings in mounds were higher than in patches;however,the same did not apply to diameter.In Cladina and Myrtillus sites,there was no difference in growth for bareroot and containerised seedlings with different soil treatments.Growing conditions and soil types should be considered when applying different soil treatment methods to ensure high survival rates and successful seedling growth. 展开更多
关键词 Boreal forests Mechanical site preparation Patch scarification MOUNDING Soil properties Containerised seedlings Bareroot seedlings
下载PDF
Relationship between Seed Priming Mediated Seedling Vigor and Yield Performance of Spring Wheat
4
作者 Md.Parvez Anwar Masuma Akhter +5 位作者 Sharmin Aktar Sinthia Afsana Kheya A.K.M.Mominul Islam Sabina Yeasmin Ahmed Khairul Hasan Md.Harun Or Rashid 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1159-1177,共19页
Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective see... Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective seed priming method that would ensure the potential yield of wheat in Bangladesh,two experiments were carried out from December 2021 to March 2022 at the Department of Agronomy,Bangladesh Agricultural University.Two wheat varieties namely BARI Gom-28 and BWMRI Gom-1 were subjected to a range of priming chemicals in both lab and pot tests.These compounds included the following:control(no priming),hydropriming(distilled water),10000 ppm KNO_(3),15000 ppm KNO_(3),40000 ppm Mannitol,60000 ppm Mannitol,10000 ppm NaCl,20000 ppm NaCl,100 ppm PEG,150 ppm PEG,500 ppm NaOCl,1000 ppm NaOCl,10000 ppm CaCl_(2),20000 ppm CaCl_(2),10000 ppm KCl and 20000 ppm KCl.A complete randomized design(CRD)with three repli-cations was used to set up the experiments.The results showed that BARI Gom-28 and BWMRI Gom-1 responded best to KCl priming in terms of rapid seed germination and strong seedling development.On the other hand,the best priming agents for plant growth and productivity turned out to be CaCl_(2) and KCL.The results of this study support the possibility of using seed priming as a technique to improve wheat plant development and output by raising seed emergence and survival rates. 展开更多
关键词 PRIMING seedling percentage GERMINATION growth YIELD WHEAT
下载PDF
Seedling dynamics differ between canopy species and understory species in a tropical seasonal rainforest,SW China
5
作者 Libing Pan Xiaoyang Song +2 位作者 Wenfu Zhang Jie Yang Min Cao 《Plant Diversity》 SCIE CAS CSCD 2024年第5期671-677,共7页
We used 11 years of census data from 450 seedling quadrats established in a 20-ha forest dynamics plot to study seedling dynamics in tree species of a tropical seasonal rainforest in Xishuangbanna,southwestern China.W... We used 11 years of census data from 450 seedling quadrats established in a 20-ha forest dynamics plot to study seedling dynamics in tree species of a tropical seasonal rainforest in Xishuangbanna,southwestern China.We found that overall seedling recruitment rate and relative growth rate were higher in the rainy season than in the dry season.Both the recruitment rate of seedlings from canopy tree species(two species)and the relative growth rate of seedlings from understory species(nine species)were higher in the rainy season than in the dry season.However,in the rainy season,the recruitment rate of seedlings was higher for canopy tree species than for understory tree species.In addition,relative growth rate of seedlings was higher in the canopy species than in understory seedlings in the dry season.We also observed that,in both rainy and dry seasons,mortality rate of seedlings was higher for canopy species than for understory species.Overall,canopy tree species appear to have evolved a flexible strategy to adapt to the seasonal changes of a monsoon climate.In contrast,understory tree species seem to have adopted a conservative strategy.Specifically,these species mainly release seedlings in the rainy season and maintain relatively stable populations with a lower mortality rate and recruitment rate in both dry and rainy seasons.Our study suggests that canopy and understory seedling populations growing in forest understory may respond to future climate change scenarios with distinct regeneration strategies. 展开更多
关键词 Tropical forest Tree seedling SEASONALITY RECRUITMENT Mortality Relative growth rate
下载PDF
Natural variation in maize gene ZmSBR1 confers seedling resistance to Fusarium verticillioides
6
作者 Yunxia Song Peipei Ma +10 位作者 Jingyang Gao Chaopei Dong Zhao Wang Yifan Luan Jiafa Chen Doudou Sun Pei Jing Xuecai Zhang Weibin Song Zijian Zhou Jianyu Wu 《The Crop Journal》 SCIE CSCD 2024年第3期836-844,共9页
Maize seedling blight caused by Fusarium verticillioides is a widely occurring maize disease,but the genetics and mechanisms of resistance are not well understood.In this study,GWAS performed by MLM and 3VmrMLM identi... Maize seedling blight caused by Fusarium verticillioides is a widely occurring maize disease,but the genetics and mechanisms of resistance are not well understood.In this study,GWAS performed by MLM and 3VmrMLM identified 40 and 20 QTNs,associated with seedling blight resistance.These methods identified 49 and 36 genes,respectively.Functional verification of candidate gene ZmSBR1 identified by both methods showed that the resistance of a mutant line to seedling blight decreased by 0.37 grade points after inoculation with F.verticillioides,compared with the WT.The length of the stem rot lesion caused by F.verticillioides increased by 86%in mutant seedlings,and the relative length of the adult plant stalk rot increased by 35%in mutant plants compared to the wild type after inoculation with Fusarium graminearum.Transcriptome analysis showed that expression of defense-related genes after inoculation was down-regulated in the mutant compared to the wild type,synthesis of secondary metabolites associated with resistance was reduced,and the immune response triggered by PAMP decreased,resulting in decreased resistance of mutant maize seedlings.Candidate gene association analysis showed that most maize inbred lines carried the susceptible haplotype.A functional PCR marker was developed.The results demonstrated that ZmSBR1 conferred resistance to multiple Fusarium diseases at the seedling and adult growth stages and had important application value in breeding. 展开更多
关键词 seedling blight Stalk rot Multiple disease resistance
下载PDF
Effects of Silicon Formulations on Cold Tolerance of Rice Seedlings
7
作者 Ren Hongyu Wang Wenbo +3 位作者 Li Xuecong Li Shuai Wen Yahuan Zhang Xingwen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期43-52,共10页
To investigate the effects of silicon formulations on the cold tolerance of rice seedlings,Song Japonica 16(not cold tolerant)and Dongnong 427(cold tolerant)rice varieties were used as test materials and four differen... To investigate the effects of silicon formulations on the cold tolerance of rice seedlings,Song Japonica 16(not cold tolerant)and Dongnong 427(cold tolerant)rice varieties were used as test materials and four different types of silicon formulations,Si-50-G,Si-60-G,Si-T-G,and Si-E-G,were applied as foliar sprays at the seedling stage,and a control group CK(equal amount of distilled water)was set up.One week after the first silicon spray,two types of rice were subjected to low-temperature stress treatments at day/night temperatures of 12℃/10℃for 2,4,6,and 8 days.The effects of different silicon formulations on the chlorophyll,proline(Pro)and soluble sugar contents as well as superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)activities of rice seedlings under low-temperature stress were compared to find out the effects of silicon formulations on the cold tolerance of rice seedlings.The results showed that silicon formulations could significantly increase the chlorophyll content of rice seedling leaves,with Si-50-G being the most effective,with a significant increment of 40.17%compared to the CK at 2 days of low temperature.Four silicon formulations significantly increased the proline content and soluble sugar content of rice leaves at low temperature for 4-8 days.For Song Japonica 16,the most significant increment in leaf POD activity was observed in Si-E-G treatment at 2,4 and 8 days of temperature stress,with 73.58%,20.95%and 217.24%increases compared to the CK,respectively.For 4 and 6 days of temperature stress,the most significant increase in CAT activity was observed in Si-E-G treatment,with 25.70%and 75.78%increases compared to the CK,respectively.For Dongnong 427,the Si-60-G treatment showed the highest increase in leaf SOD activity for 4 and 8 days of temperature stress,with significant increases of 58.15%and 82.76%compared to the CK,respectively,and the Si-E-G treatment showed the highest increase in leaf POD activity for 2 and 8 days of temperature stress,with significant increases of 97.75%and 245.10%compared to the CK,respectively.It showed that the spraying of silicon formulations could significantly enhance the cold tolerance of rice.This study provided a scientific basis for the rational use of silicon formulations to enhance cold tolerance in rice and had important theoretical and practical significance for ensuring sustainable high and stable rice yields in Heilongjiang Province,as well as for the development of silicon fertilizers. 展开更多
关键词 silicon formulation RICE seedling stage cold tolerance physiological indicator
下载PDF
Effects of drought on non-structural carbohydrates and C,N,and P stoichiometric characteristics of Pinus yunnanensis seedlings
8
作者 Zhijuan Zhao Lina Wang +7 位作者 Yuanxi Liu Jianli Sun Jiandong Xiao Qiong Dong Lianfang Li Wanjie Zhang Chao Wang Junwen Wu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期90-102,共13页
To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,lig... To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings. 展开更多
关键词 Pinus yunnanensis seedlings DROUGHT Non-structural carbohydrates C N P stoichiometric characteristics
下载PDF
Effects of Biostimulant NEAU10 on Growth of Rice Seedlings and Soil Physicochemical Parameters
9
作者 Ding Wei Pang Yingjie Cheng Zhuo 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期13-23,共11页
The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and... The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption. 展开更多
关键词 biostimulant rice seedling growth indicator soil enzyme activity nutrient element
下载PDF
Correlation Analysis between Well-cellar Early Transplanting of Robust Seedlings and Diseases in Shiyan Tobacco-growing Area
10
作者 Dingjun WANG Aihua LI +4 位作者 Liguang CHAI Dan LIU Yixia LIU Minggang LI Jingyang PENG 《Plant Diseases and Pests》 2024年第4期21-24,36,共5页
[Objectives]The paper was to investigate the relationship between the well-cellar early transplanting of robust seedlings and the prevalence of diseases in the Shiyan tobacco-growing area.[Methods]The relationship bet... [Objectives]The paper was to investigate the relationship between the well-cellar early transplanting of robust seedlings and the prevalence of diseases in the Shiyan tobacco-growing area.[Methods]The relationship between disease occurrence and meteorological factors during the field growth period was examined by analyzing the prevalence of flue-cured tobacco virus diseases,brown spot,and total disease in the Shiyan tobacco-growing area before(2013-2017)and after(2018-2022)the well-cellar early transplanting of robust tobacco seedlings.[Results]The implementation of a well-cellar early transplanting technique of robust seedlings resulted in a reduction in the average incidence of tobacco virus disease,brown spot,and total disease by 0.83%,8.85%,and 7.91%,respectively,in comparison to the incidence observed prior to early transplanting.These findings suggest that early transplanting can significantly reduce the incidence of flue-cured tobacco diseases.Prior to the well-cellar early transplanting of robust tobacco seedlings,there was a significant(including highly significant)positive correlation between the incidence of brown spot and total disease and precipitation in August and September.The incidence of brown spot and total disease in tobacco plants was found to be significantly positively correlated with May precipitation and significantly negatively correlated with May sunshine hours following the well-cellar early transplanting of robust seedlings.The advancement of the transplanting period by 20 d resulted in a reduction in the growing period of tobacco plants in the field under autumn rains(late August to November)in western China.This effectively circumvented the suitable conditions for disease occurrence and can reduce the incidence of disease.[Conclusions]This study offers a framework for enhancing the quality and efficiency of flue-cured tobacco production in the northwest tobacco-growing area of Hubei. 展开更多
关键词 Tobacco disease Well-cellar early transplanting of robust seedlings Meteorological factor Correlation analysis Shiyan tobacco-growing area
下载PDF
Growth of tandem long-mat rice seedlings using controlled release fertilizers:Mechanical transplantation can be more economical and high yielding 被引量:1
11
作者 HE Wen-jun HE Bin +4 位作者 WU Bo-yang WANG Yu-hui YAN Fei-yu DING Yan-feng LI Gang-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3652-3666,共15页
The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery... The traditional soil-based rice seedling production methods for mechanical transplanting are resource-intensive,time consuming and laborious.The improvement and optimization of nutrient management in soil-less nursery raising methods like tandem long-mat seedlings(TLMS)are necessary for the resource-efficient cultivation of rice.In the present study,a controlled-release fertilizer(CRF)-polymer-coated compound fertilizer with 3 months release period(PCCF-3M)was applied as seedling fertilizer(SF),and five different dosages of SF(SF-0,SF-10,SF-20,SF-30,and SF-40)were compared with an organic substrate as the control(CK).Among all SF treatments,the best results were obtained with the application of 20 g/tray of SF(SF-20),as the seedling quality and machine transplanting quality were comparable to those of CK.In contrast,the lower dosages(SF-0 and SF-10)resulted in low nitrogen content and reduced shoot growth,while the higher dosages(SF-30 and SF-40)resulted in toxicity(increased malondialdehyde accumulation)and inhibited the root growth.Similarly,SF-20 increased panicle number(5.6-7.0%)and yield(4.3-5.3%)compared with CK,which might be related to the remaining SF entangled in the roots supporting the tiller growth of rice seedlings in the field.Moreover,SF-20 reduced the seedling block weight(53.1%)and cost of seedling production(23.5%)but increased the gross margin,indicating that it was easy to handle and economical.Taken together,our results indicate that SF-20 is a cost-effective way to promote the growth and transplanting efficiency of rice seedlings.To our knowledge,this study is the first to determine the optimum dosage of CRF for the soil-less production of rice seedlings. 展开更多
关键词 machine-transplanted rice tandem long-mat seedlings controlled release fertilizer seedling quality yield
下载PDF
Identification of candidate genes that regulate the trade-off between seedling cold tolerance and fruit quality in melon (Cucumis melo L.) 被引量:1
12
作者 Lili Li Qiong Li +16 位作者 Bin Chen Jiyu Wang Fei Ding Panqiao Wang Xiuyue Zhang Juan Hou Renren Luo Xiang Li Jingwen Zheng Sen Yang Luming Yang Lei Zhu Shouru Sun Changsheng Ma Qin Li Ying Li Jianbin Hu 《Horticulture Research》 SCIE CSCD 2023年第7期7-21,共15页
Trade-offs between survival and growth are widely observed in plants.Melon is an annual,trailing herb that produces economically valuable fruits that are traditionally cultivated in early spring in China.Melon seedlin... Trade-offs between survival and growth are widely observed in plants.Melon is an annual,trailing herb that produces economically valuable fruits that are traditionally cultivated in early spring in China.Melon seedlings are sensitive to low temperatures,and thus usually suffer from cold stress during the early growth period.However,little is known about the mechanism behind the trade-offs between seedling cold tolerance and fruit quality in melon.In this study,a total of 31 primary metabolites were detected from the mature fruits of eight melon lines that differ with respect to seedling cold tolerance;these included 12 amino acids,10 organic acids,and 9 soluble sugars.Our results showed that concentrations of most of the primary metabolites in the cold-resistant melons were generally lower than in the cold-sensitive melons;the greatest difference in metabolite levels was observed between the cold-resistant line H581 and the moderately cold-resistant line HH09.The metabolite and transcriptome data for these two lines were then subjected to weighted correlation network analysis,resulting in the identification of five key candidate genes underlying the balancing between seedling cold tolerance and fruit quality.Among these genes,CmEAF7 might play multiple roles in regulating chloroplast development,photosynthesis,and the ABA pathway.Furthermore,multi-method functional analysis showed that CmEAF7 can certainly improve both seedling cold tolerance and fruit quality in melon.Our study identified an agriculturally important gene,CmEAF7,and provides a new insight into breeding methods to develop melon cultivars with seedling cold tolerance and high fruit quality. 展开更多
关键词 seedling BREEDING CULTIVAR
下载PDF
BEAR1, a bHLH transcription factor, controls seedling growth by regulating gibberellins biosynthesis in rice 被引量:1
13
作者 Yantong Teng Maohong Cai +3 位作者 Qinyu Xie Qinglong Liu Haiwen Zhang Tao Chen 《The Crop Journal》 SCIE CSCD 2023年第3期744-755,共12页
The genetic pathways of rice seedling growth have a major impact on seedling emergence from soil and development.In this study,we identified a new bHLH transcription factor,BEAR1,from rice RNAi mutant library.Both the... The genetic pathways of rice seedling growth have a major impact on seedling emergence from soil and development.In this study,we identified a new bHLH transcription factor,BEAR1,from rice RNAi mutant library.Both the BEAR1-RNAi and bear1 CRISPR mutants had accelerated seedling growth.Histological section of leaves showed accelerated development of lacuna and vascular bundles in bear1 mutant.GUS staining revealed that BEAR1 was highly expressed in coleoptiles and leaves at seedling stage.Expression analysis of gibberellin(GA)biosynthesis and metabolic genes and content determination of active GAs indicated that the expression of GA biosynthesis genes,especially OsKS4 and OsCPS2,were upregulated and the GAs content were significantly increased in bear1,which correlated with the seedling phenotype of bear1 mutant.Molecular and biochemical assays revealed that BEAR1 directly binds to the promoter of OsKS4,thereby repressing its expression.Haplotypes analysis showed clear differentiation in indica and japonica rice varieties,and a strong correlation with seedling height.These findings provide novel insights into the regulation of seedling growth in rice. 展开更多
关键词 RICE BEAR1 seedling growth GIBBERELLINS OsKS4
下载PDF
Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheatstraw return 被引量:3
14
作者 TIAN Jin-yu LI Shao-ping +8 位作者 CHENG Shuang LIU Qiu-yuan ZHOU Lei TAO Yu XING Zhi-peng HU Ya-jie GUO Bao-wei WEI Hai-yan ZHANG Hong-cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期400-416,共17页
Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally ... Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally friendly.However,this method of rice production may produce lower yields in a rice–wheat rotation system because of its poor seedling establishment.To address this problem,we performed field experiments to determine the rice yield at five seedling density levels(B1,B2,B3,B4,and B5=100,190,280,370,and 460 seedlings m-2,respectively) and clarify the physiological basis of yield formation.We selected a representative high-quality rice variety and a multifunctional seeder that used in a typical rice–wheat rotation area in 2016 and 2018.The proportion of main stem panicle increased with increasing seedling density.There was a parabolic relationship between yield and seedling density,and the maximum yield(9.34-9.47 t ha-1) was obtained under B3.The maximum yield was associated with a higher total spikelet number m-2 and greater biomass accumulation from heading to maturity.The higher total spikelet number m-2 under B3 was attributed to an increase in panicle number m-2 compared with B1 and B2.Although the panicle numbers also increased under B4 and B5,these increases were insufficient to compensate for the reduced spikelet numbers per panicle.Lower biomass,smaller leaf area,and lower N uptake per plant from the stem elongation stage to the heading stage were partially responsible for the smaller panicle size at higher seedling density levels such as B5.The higher biomass accumulation under B3 was ascribed to the increases in the photosynthetic rate of the top three leaves m-2 of land,crop growth rate,net assimilation rate,and leaf area index.Furthermore,the B3 rice population was marked by a higher grain–leaf ratio,as well as a lower export ratio and transport ratio of biomass per stem-sheath.A quadratic function predicted that 260-290 seedlings m-2 is the optimum seedling density for achieving maximum yield.Together,these results suggested that appropriately increasing the seedling density,and thereby increasing the proportion of panicles formed by the main stem,is an effective approach for obtaining a higher yield in DDR sown using a multifunctional seeder in a rice–wheat rotation system. 展开更多
关键词 seedling density dry direct-seeded rice sown by a multifunctional seeder rice–wheat rotation system yield biomass photosynthetic capacity
下载PDF
Habitat heterogeneity and biotic interactions mediate climate influences on seedling survival in a temperate forest 被引量:1
15
作者 Haikun Liu Hang Shi +5 位作者 Quan Zhou Man Hu Xiao Shu Kerong Zhang Quanfa Zhang Haishan Dang 《Forest Ecosystems》 SCIE CSCD 2023年第5期579-588,共10页
Seedling stage has long been recognized as the bottleneck of forest regeneration,and the biotic and abiotic processes that dominate at seedling stage largely affect the dynamics of forest.Seedlings might be particular... Seedling stage has long been recognized as the bottleneck of forest regeneration,and the biotic and abiotic processes that dominate at seedling stage largely affect the dynamics of forest.Seedlings might be particularly vulnerable to climate stress,so elucidating the role of interannual climate variation in fostering community dynamics is crucial to understanding the response of forest to climate change.Using seedling survival data of 69 woody species collected for five consecutive years from a 25-ha permanent plot in a temperate deciduous forest,we identified the effects of biotic interactions and habitat factors on seedling survival,and examined how those effects changed over time.We found that interannual climate variations,followed by biotic interactions and habitat conditions,were the most significant predictors of seedling survival.Understory light showed a positive impact on seedling mortality,and seedling survival responded differently to soil and air temperature.Effects of conspecific neighbor density were significantly strengthened with the increase of maximum air temperature and vapor pressure deficits in the growing season,but were weakened by increased maximum soil temperature and precipitation in the non-growing season.Surprisingly,seedling survival was strongly correlated with interannual climate variability at all life stages,and the strength of the correlation increased with seedling age.In addition,the importance of biotic and abiotic factors on seedling survival differed significantly among species-trait groups.Thus,the neighborhood-mediated effects on mortality might be significantly contributing or even inverting the direct effects of varying abiotic conditions on seedling survival,and density-dependent effects could not be the only important factor influencing seedling survival at an early stage. 展开更多
关键词 seedling survival Extreme interannual climate Negative density-dependence Species coexistence
下载PDF
Effects of Flooding Stress on Growth and Root Physiology and Biochemistry of Grafted Red-seed Watermelon Seedlings 被引量:1
16
作者 Ke ZHANG Siliang LUO +2 位作者 Tangjing LIU Wu QIN Suping WU 《Agricultural Biotechnology》 CAS 2023年第2期1-4,10,共5页
[Objectives]This study was conducted to explore how to improve the waterlogging tolerance of red-seed watermelon through grafting,to provide a theoretical basis for its cultivation in rainy season.[Methods]The effects... [Objectives]This study was conducted to explore how to improve the waterlogging tolerance of red-seed watermelon through grafting,to provide a theoretical basis for its cultivation in rainy season.[Methods]The effects of flooding stress on the growth and root physiological and biochemical characteristics of grafted and own-rooted red-seed watermelon seedlings were studied using Luffa as rootstocks and"Zhongxin 1"red-seed watermelon as scions.[Results]After flooding stress,the biomass and root activity of grafted seedlings of red-seed watermelon were significantly higher than those of own-rooted seedlings.With the prolongation of flooding stress time,the soluble sugar and proline content showed a trend of first increasing and then decreasing,and the grafted seedlings had a larger increase and a smaller decrease,and were always significantly higher than own-rooted seedlings in the same period.The content of malondialdehyde in the root system of grafted seedlings increased first and then decreased,while it continued to increase in own-rooted seedlings,and the increase in own-rooted seedlings was significantly greater than that in grafted seedlings during the same period.[Conclusions]Grafting on Luffa rootstocks could improve waterlogging tolerance of red-seed watermelon. 展开更多
关键词 Red-seed watermelon Grafted seedlings Flooding stress Root system Physiological metabolism
下载PDF
Thermal and photoperiodic requirements of the seedling stage of three tropical forest species
17
作者 Fabrina Bolzan Martins Mábele de Cássia Ferreira +1 位作者 Flávia Fernanda Azevedo Fagundes Gabriel Wilson Lorena Florêncio 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期209-220,共12页
Air temperature and photoperiod play an important role in the seedling development for tropical forest species.Both variables are sensitive to climate,and so evaluating thermal and photoperiodic effects on seedling de... Air temperature and photoperiod play an important role in the seedling development for tropical forest species.Both variables are sensitive to climate,and so evaluating thermal and photoperiodic effects on seedling development is fundamental,especially for climate change studies.Methods to quantify thermal time and the energy required for plants to reach a development stage include air temperature and cardinal temperatures.The photoperiod will also affect physiological reactions of a plant and thus its development.Here we evaluated the six thermal time methods widely used to compute thermal requirement,and identified the influence of the photoperiod from the 2015 and2016 growing seasons and 12 sowing dates in Itajubá,Minas Gerais state,Brazil,on seedling development of three native tropical forest species Psidium guajava L.(Myrtaceae),Citharexylum myrianthum Cham.(Verbenaceae),and Bixa orellana L.(Bixaceae).The method used to quantify thermal time influenced the analytical results of seedling development;the one that considered three cardinal temperatures and compared them with the mean air temperature(Method5)performed better in computing thermal requirements.The influence of photoperiod on seedling development was inconclusive for the three species,but all three developed better in mild temperatures(between 13.3℃and 26.9℃)with a photoperiod shorter than 13 h. 展开更多
关键词 PHYLLOCHRON Thermal time Day length seedling stage PHENOLOGY
下载PDF
Primed Expression of Defense-Related Genes by Streptomyces cameroonensis-Based Bioformulation (SCaB) on Cocoa Seedlings in a Nursery Challenged with Phytophthora megakarya
18
作者 Dzelamonyuy Aristide Téné Tayo Paul Martial +3 位作者 Alain Bopda Waffo Effa Onomo Pierre Ewané Cécile Annie Boudjeko Thaddée 《American Journal of Plant Sciences》 2023年第12期1480-1497,共18页
A Streptomyces cameroonensis based bioformulation (SCaB) has been developed and shown to be stable and effective in controlling the early proliferation of P. megakarya and promoting the growth of cocoa seedlings in nu... A Streptomyces cameroonensis based bioformulation (SCaB) has been developed and shown to be stable and effective in controlling the early proliferation of P. megakarya and promoting the growth of cocoa seedlings in nursery. This study was carried out to explore the molecular mechanisms associated with the interaction of SCaB, cocoa seedlings, and the pathogen during the early stages of seedling growth in the nursery. For this purpose, seedling treatment with 10% W/W SCaB under greenhouse conditions evaluated SCaB’s capacity to stimulate the defense mechanisms in cocoa. Agronomic growth parameters and the level of induction of defense-associated compounds were analyzed. Real-time (rt) PCR was used to assess the level of expression of defense genes. Here, we showed that the application of SCaB as a seedling treatment enhanced the growth of cocoa seedlings in the nursery by an average of 15.6% after 30 days of growth and led to an average reduction in disease severity of 64% when challenged with P. megakarya. The latter led to an increased synthesis of total phenolic compounds, flavonoids, chitinases, peroxidases, and β-1,3-glucanases and an induced up-regulation of TcChiB, TcGlu-1, TcPer-1, and TcMYBPA genes. This research provides a basis for the optimization of beneficial microorganisms as a viable alternative to chemical fungicides used in disease suppression. 展开更多
关键词 Cocoa seedlings Phytophthora megakarya Streptomyces cameroonensis Bioformulation PRIMING
下载PDF
Study on a Bowl-based Mechanism for Transplanting Potted Strawberry Seedlings
19
作者 Yin Da-qing Yang Yu-chao +2 位作者 Zhou Mai-le Wei Ming-xu Wang Jin-wu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第1期56-68,共13页
To improve the efficiency of fetching and transplanting seedlings for the mechanization of strawberry planting,an integrated transplanting mechanism was designed with protruding,fetching and planting performance to ac... To improve the efficiency of fetching and transplanting seedlings for the mechanization of strawberry planting,an integrated transplanting mechanism was designed with protruding,fetching and planting performance to achieve rapid fetching and pushing bowl movements.According to the working principle of the slewing mechanism,a kinematics model and the optimization goal were established,respectively.Based on visual auxiliary analysis software,optimal parameters were obtained.A three-dimensional model was established to obtain a simulation trajectory by means of a virtual simulation design analysis.Three-dimensional printing technology was used to manufacture the test prototype,and the actual working trajectories of the test prototype were extracted using high-speed photography technology,which verified the consistency of the actual trajectory with the theoretical and simulated trajectories.A prototype transplanting experiment was performed with the success rate of seedling extraction of 91.2%and excellent planting rate of 82.8%,which met the requirements for integrated strawberry harvesting,planting and transplanting.The experimental results verified the correctness and feasibility of the design of integrated transplanting mechanism. 展开更多
关键词 potted strawberry seedlings potted seedling transplanting integrated planting mechanism protruding and pushing bowl type parameter optimization
下载PDF
Does Selection for Seedling Tiller Number in Perennial Biomass Feedstocks Translate to Yield and Quality Improvements in Mature Swards?
20
作者 Robert B. Mitchell Kenneth P. Vogel +1 位作者 Susan J. Tunnell James L. Stubbendieck 《American Journal of Plant Sciences》 2023年第11期1223-1234,共12页
Breeding for seedling traits in herbaceous perennial biomass feedstocks that translate into increased biomass yield or quality in established swards could accelerate the development of perennial grass cultivars for bi... Breeding for seedling traits in herbaceous perennial biomass feedstocks that translate into increased biomass yield or quality in established swards could accelerate the development of perennial grass cultivars for bioenergy or forage. In previously reported research, breeding for single large tillers (ST) or multiple tillers (MT, ≥3) six weeks after planting for two generations in big bluestem (Andropogon gerardii Vitman) and switchgrass (Panicum virgatum L.) base populations produced ST and MT populations that differed significantly for seedling and mature plant traits including biomass yield in spaced planted nurseries. Our objective was to evaluate these ST and MT populations in sward trials to determine the effect of these genetic changes on biomass yield and quality when the plants were grown in competitive sward conditions. Big bluestem monocultures of the base, ST, and MT populations were evaluated at three locations in Nebraska in 2001 and 2002 as randomized complete block experiments with four replicates. Switchgrass monocultures of the base, ST, and MT populations were evaluated in 2003, 2004, and 2005 near Mead, NE as a randomized complete block with six replicates. In both big bluestem and switchgrass, the ST and MT populations did not consistently differ from the base population or each other for biomass yield or forage quality. These results demonstrate the importance of evaluating perennial grasses in sward trials and not relying solely on greenhouse-grown plants or space-planted nurseries to develop selection criteria and make selection decisions. 展开更多
关键词 seedling Tiller Number Perennial Biomass
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部