This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of...This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.展开更多
Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination a...Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination and seedling growth of direct-seeded rice.Recently,nanoparticles(NPs)have been reported to be effectively involved in many plant physiological processes,particularly under abiotic stresses.To our knowledge,no comparative studies have been performed to study the efficiency of conventional,chemical,and seed nanopriming for better plant stress tolerance.Therefore,we conducted growth chamber and field experiments with different salinity levels(0,1.5,and 3‰),two rice varieties(CY1000 and LLY506),and different priming techniques such as hydropriming,chemical priming(ascorbic acid,salicylic acid,and γ-aminobutyric acid),and nanopriming(zinc oxide nanoparticles).Salt stress inhibited rice seed germination,germination index,vigor index,and seedling growth.Also,salt stress increased the over accumulation of reactive oxygen species(H_(2)O_(2) and O_(2)^(-)·)and malondialdehyde(MDA)contents.Furthermore,salt-stressed seedlings accumulated higher sodium(Na^(+))ions and significantly lower potassium(K^(+))ions.Moreover,the findings of our study demonstrated that,among the different priming techniques,seed nanopriming with zinc oxide nanoparticles(NanoZnO)significantly contributed to rice salt tolerance.ZnO nanopriming improved rice seed germination and seedling growth in the pot and field experiments under salt stress.The possible mechanism behind ZnO nanopriming improved rice salt tolerance included higher contents of α-amylase,soluble sugar,and soluble protein and higher activities of antioxidant enzymes to sustain better seed germination and seedling growth.Moreover,another mechanism of ZnO nanopriming induced rice salt tolerance was associated with better maintenance of(K^(+))ions content.Our research concluded that NanoZnO could promote plant salt tolerance and be adopted as a practical nanopriming technique,promoting global crop production in saltaffected agricultural lands.展开更多
Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based ...Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.展开更多
Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ...Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.展开更多
[Objectives]To find out a suitable cultivation technique of Wangu 098 in Nanyang area,speed up the popularization,demonstration and application of Wangu 098,and provide a theoretical and practical basis for adjusting ...[Objectives]To find out a suitable cultivation technique of Wangu 098 in Nanyang area,speed up the popularization,demonstration and application of Wangu 098,and provide a theoretical and practical basis for adjusting the planting structure and realizing the matching of improved varieties and methods.[Methods]The new self-bred millet variety Wangu 098 was used as the material,and the two-factor split zone experimental design was adopted.The effects of different sowing dates and densities on the yield,growth period and agronomic characters of millet were studied.[Results]The interaction of seeding date and density had a great effect on the yield and plant traits of millet.Millet yield was significantly and positively correlated with plant height,panicle length,single panicle weight,panicle grain weight and tiller number.[Conclusions]The reasonable combination of seeding date and density could give full play to the yield potential of millet.According to the experimental results and cultivation experience,the suitable seeding date of millet in Nanyang area is in the first and middle ten days of June,and the best density is about 750000 plants/ha.However,after June 30,the seeding millet did not tiller,so the density should be increased to more than 900000 plants/ha to obtain higher yield.In terms of cultivation and management,timely seeding,reasonable close planting,and coordination of vegetative growth and reproductive growth can make the plant tall and strong,panicle long and thick,and improve the yield of millet.展开更多
Shortly after tunneling,problems such as primary-support through cracks and clearance infringement are found in the shallow-buried section of tunnel No.4 of the Jakarta-Bandung High Speed Railway(Jakarta-Bandung HSR),...Shortly after tunneling,problems such as primary-support through cracks and clearance infringement are found in the shallow-buried section of tunnel No.4 of the Jakarta-Bandung High Speed Railway(Jakarta-Bandung HSR),and orthogonal cracks can be found on the earth surface in front of the working face,which brings great challenges to the tunnel construction.In view of the above engineering problems,the sliding surface is speculated according to the geological and field conditions,and the impact of landslides is applied in the model in the form of external load.The paper uses the numerical simulation method to analyze and compare the impact of landslides on the tunnel structure and deformation,and puts forward the reinforcement measures.The conclusions of the studies are:(1)under the influence of heavy rainfall,the strength index of volcanic deposit clay stratum drops sharply,and meanwhile the multiple factors including tunnel excavation are liable to cause sliding of the front slope;(2)parallel landslide in front of the tunnel has a great impact on the tunnel,so setting-up of pre-reinforcement measures to control landslide shall be the focus of similar projects during design;(3)the deformation and stress of the tunnel structure can be significantly controlled for safe construction by strengthening the shallow-buried tunnel with pile foundation and longitudinal and transverse beam frames during landslide.展开更多
In order to study the effect of rice straw returning and seeding patterns on seedling emergence and grain yield, field experiment was conducted to investi- gate the effects of straw mechanized returning and different ...In order to study the effect of rice straw returning and seeding patterns on seedling emergence and grain yield, field experiment was conducted to investi- gate the effects of straw mechanized returning and different seeding patterns on e- mergence rate, emergence uniformity and yield traits of wheat after rice. The results were as follows: in rice straw removal treatments, the emergence rate of mechani- cal seeding in drill was lower than that of mechanical uniform planting and manual broadcast sowing, which were 51.84%, 90.89% and 88.87%, respectively; the emer- gence uniformity of manual broadcast sowing was inferior to mechanical seeding in drill and mechanical uniform planting, which were 0.49, 0.26 and 0.23, respectively. As for the treatments with rice straw returning to the field, the emergence rate and emergence uniformity all decreased in the three seeding patterns, of which mechan- ical seeding in drill dropped markedly with emergence rate decreased by 36.54%. The emergence rate and emergence uniformity affected grain yield by affecting pan- icle, grains per spike and 1 000-grain weight. The grain yield for the treatment with rice straw removal was 6 091.34 kg/hm2, while that with rice straw returning to field was 6 476.20 kg/hm2, and both were higher than the yields of the other two seed- ing patterns. Therefore, mechanical uniform planting was?recommended for its higher emergence rate, better emergence uniformity, which was conductive to increase grain yield in wheat after rice production with rice straw returning to field.展开更多
ObjectiveThis study aimed to investigate the effect of fulvic acid on the growth and yield components of direct seeding rice (Nanjing 44). MethodThe rice seeds were soaked in 0 (water as a control), 1, 2, 4 and 6 ...ObjectiveThis study aimed to investigate the effect of fulvic acid on the growth and yield components of direct seeding rice (Nanjing 44). MethodThe rice seeds were soaked in 0 (water as a control), 1, 2, 4 and 6 g/L fulvic acid (FA) before sowed. Then, the rice morphological indices, leaf chlorophyll content, photosynthesis parameters, root activity and chlorophyll fluorescence parameters were measured in the following field studies. ResultCompared with the control, the leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance and dry matter weight and some fluorescence parameters such as the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), excitation energy capture efficiency of opened PSII reaction center (Fv’/Fm’) and efficiency of the open reaction centre (ΦPS II) increased by different levels at both jointing stage and heading stage of direct seeding rice, whose seeds were soaked by FA with different concentrations. High FA concentration (4-6 g/L) significantly increased the cultivated rice leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate and dry matter weight by 10.32% -22.88% , 5.88% -13.11% , 12.16% -26.84% , 11.43% -88.46% , 10.63% -21.63% , 18.49% -19.68% , respectively, thereby improving the physiological function and light energy transform efficiency of rice at the growth stage. With FA concentration increasing, the yield, effective panicles, grain number per panicle and seed setting rate were increased significantly compared with the control by 17.52%-18.71%, 3.46%-3.85%, 6.30%- 6.51% and 7.82%-8.69% respectively. ConclusionSoaking rice seed with FA could be considered as an effective way to improve the rice competitiveness at early growth stage.展开更多
Hybrid rice Xinhunyou No. 6 could be cultivated by mixing male and fe- male parents and performing seedling raising followed by transplanting, mechanical planting or mechanical direct seeding according to the producti...Hybrid rice Xinhunyou No. 6 could be cultivated by mixing male and fe- male parents and performing seedling raising followed by transplanting, mechanical planting or mechanical direct seeding according to the production methods of com- mercial rice. During flowering stage, leaf cutting, application of "920" and pollination were conducted; after pollination, bentazon with a certain concentration was sprayed to kill the male parent; and the hybrid rice was harvested mechanically. Before storage, color separation was performed to remove little remaining male parent, thereby achieving whole-process mechanization of hybrid rice seed production. This study introduced mechanized seed production of Xinhunyou No. 6 through mixed- seeding from the aspects including mechanical direct seeding, seeding raising fol- lowed by transplanting and mechanical planting.展开更多
In the east of Hunan Province, the research introduced new-type special controI ed-reIease fertiIizer for rapeseed, "Yishizhuang", and expIored its appIications in direct-seeding of rapeseed production. The resuIts ...In the east of Hunan Province, the research introduced new-type special controI ed-reIease fertiIizer for rapeseed, "Yishizhuang", and expIored its appIications in direct-seeding of rapeseed production. The resuIts showed that the appIication of special controI ed reIease fertiIizer for rapeseeds avoids earIy decIine of rapeseed resuIting from fertiIizer Ioss by one-off appIication, improves the number of green Ieaf before winter, and extends photosynthetic Iifespan of pods, which significantIy increases yields. What' more, with higher output-input ratio, the fertiIizer takes ad-vantages in saving cost, Iabor and increasing yield.展开更多
[Objective] The experiment was conducted to study suitable date of seed- ing and density of spring potato at the stock breeding base in Ebian County at an elevation of 1 200 to 1 500 m. [Methods] Virus-free Potato "C...[Objective] The experiment was conducted to study suitable date of seed- ing and density of spring potato at the stock breeding base in Ebian County at an elevation of 1 200 to 1 500 m. [Methods] Virus-free Potato "Chuanyu 13" was used as material to study the effects of date of seeding and density on growing period, germination rate, yield and water use efficiency of spring potato in the field. [Result] With the postponement of date of seeding, the days from sowing to germination shortened, while the germination rate, the number of tubers per plant, the number of middle and small tubers in a group, yield and water use efficiency all increased. Planting density had no effects on the days from sowing to germination and the ger- mination rate, while the number of tubers per ptant, the number of middle and small tubers in a group, yield and water use efficiency increased significantly along with the increasing planting density. [Conclusion] At an elevation of 1 200 m to 1 250 m in Ebian County, the suitable date of seeding for potato was from February 9 to March 1, and the suitable planting density was 12×10^4 plants per hm^2, however, in the optimum planting density has not been found so that it needs further research,展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51538001 and 51978019).
文摘This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.
基金supported by the Foundation of Major Projects in Hainan Province,China(ZDKJ202001)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination and seedling growth of direct-seeded rice.Recently,nanoparticles(NPs)have been reported to be effectively involved in many plant physiological processes,particularly under abiotic stresses.To our knowledge,no comparative studies have been performed to study the efficiency of conventional,chemical,and seed nanopriming for better plant stress tolerance.Therefore,we conducted growth chamber and field experiments with different salinity levels(0,1.5,and 3‰),two rice varieties(CY1000 and LLY506),and different priming techniques such as hydropriming,chemical priming(ascorbic acid,salicylic acid,and γ-aminobutyric acid),and nanopriming(zinc oxide nanoparticles).Salt stress inhibited rice seed germination,germination index,vigor index,and seedling growth.Also,salt stress increased the over accumulation of reactive oxygen species(H_(2)O_(2) and O_(2)^(-)·)and malondialdehyde(MDA)contents.Furthermore,salt-stressed seedlings accumulated higher sodium(Na^(+))ions and significantly lower potassium(K^(+))ions.Moreover,the findings of our study demonstrated that,among the different priming techniques,seed nanopriming with zinc oxide nanoparticles(NanoZnO)significantly contributed to rice salt tolerance.ZnO nanopriming improved rice seed germination and seedling growth in the pot and field experiments under salt stress.The possible mechanism behind ZnO nanopriming improved rice salt tolerance included higher contents of α-amylase,soluble sugar,and soluble protein and higher activities of antioxidant enzymes to sustain better seed germination and seedling growth.Moreover,another mechanism of ZnO nanopriming induced rice salt tolerance was associated with better maintenance of(K^(+))ions content.Our research concluded that NanoZnO could promote plant salt tolerance and be adopted as a practical nanopriming technique,promoting global crop production in saltaffected agricultural lands.
基金the National Natural Science Foundation of China(No.51974042)National Key Research and Development Program of China(No.2023YFC3009005).
文摘Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03030001)the National Natural Science Foundation of China (Grant No.12075283)。
文摘Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.
基金Supported by Key R&D Project of Henan Province(231111110300)National Modern Agricultural Industry Technology System Special Fund Project of Ministry of Finance/Ministry of Agriculture and Rural Affairs(nycytx-CARS-06)+1 种基金Science and Technology Innovation Team Project of Henan Academy of Agricultural Sciences(2022KJCHXTD33)Henan Provincial Agricultural Seed Research Project(2022010401).
文摘[Objectives]To find out a suitable cultivation technique of Wangu 098 in Nanyang area,speed up the popularization,demonstration and application of Wangu 098,and provide a theoretical and practical basis for adjusting the planting structure and realizing the matching of improved varieties and methods.[Methods]The new self-bred millet variety Wangu 098 was used as the material,and the two-factor split zone experimental design was adopted.The effects of different sowing dates and densities on the yield,growth period and agronomic characters of millet were studied.[Results]The interaction of seeding date and density had a great effect on the yield and plant traits of millet.Millet yield was significantly and positively correlated with plant height,panicle length,single panicle weight,panicle grain weight and tiller number.[Conclusions]The reasonable combination of seeding date and density could give full play to the yield potential of millet.According to the experimental results and cultivation experience,the suitable seeding date of millet in Nanyang area is in the first and middle ten days of June,and the best density is about 750000 plants/ha.However,after June 30,the seeding millet did not tiller,so the density should be increased to more than 900000 plants/ha to obtain higher yield.In terms of cultivation and management,timely seeding,reasonable close planting,and coordination of vegetative growth and reproductive growth can make the plant tall and strong,panicle long and thick,and improve the yield of millet.
文摘Shortly after tunneling,problems such as primary-support through cracks and clearance infringement are found in the shallow-buried section of tunnel No.4 of the Jakarta-Bandung High Speed Railway(Jakarta-Bandung HSR),and orthogonal cracks can be found on the earth surface in front of the working face,which brings great challenges to the tunnel construction.In view of the above engineering problems,the sliding surface is speculated according to the geological and field conditions,and the impact of landslides is applied in the model in the form of external load.The paper uses the numerical simulation method to analyze and compare the impact of landslides on the tunnel structure and deformation,and puts forward the reinforcement measures.The conclusions of the studies are:(1)under the influence of heavy rainfall,the strength index of volcanic deposit clay stratum drops sharply,and meanwhile the multiple factors including tunnel excavation are liable to cause sliding of the front slope;(2)parallel landslide in front of the tunnel has a great impact on the tunnel,so setting-up of pre-reinforcement measures to control landslide shall be the focus of similar projects during design;(3)the deformation and stress of the tunnel structure can be significantly controlled for safe construction by strengthening the shallow-buried tunnel with pile foundation and longitudinal and transverse beam frames during landslide.
文摘In order to study the effect of rice straw returning and seeding patterns on seedling emergence and grain yield, field experiment was conducted to investi- gate the effects of straw mechanized returning and different seeding patterns on e- mergence rate, emergence uniformity and yield traits of wheat after rice. The results were as follows: in rice straw removal treatments, the emergence rate of mechani- cal seeding in drill was lower than that of mechanical uniform planting and manual broadcast sowing, which were 51.84%, 90.89% and 88.87%, respectively; the emer- gence uniformity of manual broadcast sowing was inferior to mechanical seeding in drill and mechanical uniform planting, which were 0.49, 0.26 and 0.23, respectively. As for the treatments with rice straw returning to the field, the emergence rate and emergence uniformity all decreased in the three seeding patterns, of which mechan- ical seeding in drill dropped markedly with emergence rate decreased by 36.54%. The emergence rate and emergence uniformity affected grain yield by affecting pan- icle, grains per spike and 1 000-grain weight. The grain yield for the treatment with rice straw removal was 6 091.34 kg/hm2, while that with rice straw returning to field was 6 476.20 kg/hm2, and both were higher than the yields of the other two seed- ing patterns. Therefore, mechanical uniform planting was?recommended for its higher emergence rate, better emergence uniformity, which was conductive to increase grain yield in wheat after rice production with rice straw returning to field.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303022)National Key Technology Research and Development Program during the 12th Five-Year Plan Period(2012BAD19B02)~~
文摘ObjectiveThis study aimed to investigate the effect of fulvic acid on the growth and yield components of direct seeding rice (Nanjing 44). MethodThe rice seeds were soaked in 0 (water as a control), 1, 2, 4 and 6 g/L fulvic acid (FA) before sowed. Then, the rice morphological indices, leaf chlorophyll content, photosynthesis parameters, root activity and chlorophyll fluorescence parameters were measured in the following field studies. ResultCompared with the control, the leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance and dry matter weight and some fluorescence parameters such as the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), excitation energy capture efficiency of opened PSII reaction center (Fv’/Fm’) and efficiency of the open reaction centre (ΦPS II) increased by different levels at both jointing stage and heading stage of direct seeding rice, whose seeds were soaked by FA with different concentrations. High FA concentration (4-6 g/L) significantly increased the cultivated rice leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate and dry matter weight by 10.32% -22.88% , 5.88% -13.11% , 12.16% -26.84% , 11.43% -88.46% , 10.63% -21.63% , 18.49% -19.68% , respectively, thereby improving the physiological function and light energy transform efficiency of rice at the growth stage. With FA concentration increasing, the yield, effective panicles, grain number per panicle and seed setting rate were increased significantly compared with the control by 17.52%-18.71%, 3.46%-3.85%, 6.30%- 6.51% and 7.82%-8.69% respectively. ConclusionSoaking rice seed with FA could be considered as an effective way to improve the rice competitiveness at early growth stage.
基金Supported by Science and Technology Innovation Team of Anhui Academy of Agricultural Sciences(15C0108)Subject Construction Project of Anhui Academy of Agricultural Sciences(14A0102)Science and Technology Support Program of Ministry of Science and Technology(2012BAD07B01-3)~~
文摘Hybrid rice Xinhunyou No. 6 could be cultivated by mixing male and fe- male parents and performing seedling raising followed by transplanting, mechanical planting or mechanical direct seeding according to the production methods of com- mercial rice. During flowering stage, leaf cutting, application of "920" and pollination were conducted; after pollination, bentazon with a certain concentration was sprayed to kill the male parent; and the hybrid rice was harvested mechanically. Before storage, color separation was performed to remove little remaining male parent, thereby achieving whole-process mechanization of hybrid rice seed production. This study introduced mechanized seed production of Xinhunyou No. 6 through mixed- seeding from the aspects including mechanical direct seeding, seeding raising fol- lowed by transplanting and mechanical planting.
基金Supported by Modern Agricultural Industry Technology System(CARS-13)National Agricultural Science Technology Achievement Transformation Fund(2014GB2D200211)~~
文摘In the east of Hunan Province, the research introduced new-type special controI ed-reIease fertiIizer for rapeseed, "Yishizhuang", and expIored its appIications in direct-seeding of rapeseed production. The resuIts showed that the appIication of special controI ed reIease fertiIizer for rapeseeds avoids earIy decIine of rapeseed resuIting from fertiIizer Ioss by one-off appIication, improves the number of green Ieaf before winter, and extends photosynthetic Iifespan of pods, which significantIy increases yields. What' more, with higher output-input ratio, the fertiIizer takes ad-vantages in saving cost, Iabor and increasing yield.
基金Supported by Project of Propagation of Improved Potatoes,Project of CropsLivestock and Poultry Breeding in 12th Five-Year Plan of Sichuan ProvinceTeam Project of Sichuan Potato Innovation under National Modern Industrial and Technological System~~
文摘[Objective] The experiment was conducted to study suitable date of seed- ing and density of spring potato at the stock breeding base in Ebian County at an elevation of 1 200 to 1 500 m. [Methods] Virus-free Potato "Chuanyu 13" was used as material to study the effects of date of seeding and density on growing period, germination rate, yield and water use efficiency of spring potato in the field. [Result] With the postponement of date of seeding, the days from sowing to germination shortened, while the germination rate, the number of tubers per plant, the number of middle and small tubers in a group, yield and water use efficiency all increased. Planting density had no effects on the days from sowing to germination and the ger- mination rate, while the number of tubers per ptant, the number of middle and small tubers in a group, yield and water use efficiency increased significantly along with the increasing planting density. [Conclusion] At an elevation of 1 200 m to 1 250 m in Ebian County, the suitable date of seeding for potato was from February 9 to March 1, and the suitable planting density was 12×10^4 plants per hm^2, however, in the optimum planting density has not been found so that it needs further research,