For p ∈ R, the generalized logarithmic mean Lp(a, b) and Seiffert's mean T(a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p ...For p ∈ R, the generalized logarithmic mean Lp(a, b) and Seiffert's mean T(a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p and least q such that the double-inequality Lp(a, b) 〈 T(a,b) 〈 Lq(a,b) holds for all a,b 〉 0 and a ≠ b.展开更多
In this paper, we find the greatest value p = log 2/(log Tr - log 2) = 1.53.- and the least value q -- 5/3 - 1.66.. such that the double inequality Mp(a,b) 〈 T(a,b) 〈 Mq(a,b) holds for all a, b 〉 0 with a #...In this paper, we find the greatest value p = log 2/(log Tr - log 2) = 1.53.- and the least value q -- 5/3 - 1.66.. such that the double inequality Mp(a,b) 〈 T(a,b) 〈 Mq(a,b) holds for all a, b 〉 0 with a # b. Here, Mp(a, b) and T(a, b) are the p-th power and Seiffertmeans of two positive numbers a and b, respectively.展开更多
In this article, we prove that the double inequality αP(a,b)+(1-α)Q(a,b)〈M(a,b)〈βP(a,b)+(1-β)Q(a,b)holds for any a,b 〉 0 with a ≠ b if and only if α≥1/2 and β≤[π(√2 lov (1+√2)-1]/[√...In this article, we prove that the double inequality αP(a,b)+(1-α)Q(a,b)〈M(a,b)〈βP(a,b)+(1-β)Q(a,b)holds for any a,b 〉 0 with a ≠ b if and only if α≥1/2 and β≤[π(√2 lov (1+√2)-1]/[√2π-2) log (1+√2)]=0.3595…,where M(a, b), Q(a, b), and P(a, b) ave the Neuman-Sandor, quadratic, and first Seiffert means of a and b, respectively.展开更多
基金supported by the National Natural Science Foundation of China (11071069 and 11171307)Natural Science Foundation of Hunan Province(09JJ6003)Innovation Team Foundation of the Department of Education of Zhejiang Province (T200924)
文摘For p ∈ R, the generalized logarithmic mean Lp(a, b) and Seiffert's mean T(a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p and least q such that the double-inequality Lp(a, b) 〈 T(a,b) 〈 Lq(a,b) holds for all a,b 〉 0 and a ≠ b.
基金Supported by the National Natural Science Foundation of China(61174076,61374086,11171307)the Natural Science Foundation of Zhejiang Province(LY13A010004)
文摘In this paper, we find the greatest value p = log 2/(log Tr - log 2) = 1.53.- and the least value q -- 5/3 - 1.66.. such that the double inequality Mp(a,b) 〈 T(a,b) 〈 Mq(a,b) holds for all a, b 〉 0 with a # b. Here, Mp(a, b) and T(a, b) are the p-th power and Seiffertmeans of two positive numbers a and b, respectively.
基金supported by the Natural ScienceFoundation of China under Grants 61374086 and 11371125the Natural Science Foundation of ZhejiangProvince under Grant LY13A010004
文摘In this article, we prove that the double inequality αP(a,b)+(1-α)Q(a,b)〈M(a,b)〈βP(a,b)+(1-β)Q(a,b)holds for any a,b 〉 0 with a ≠ b if and only if α≥1/2 and β≤[π(√2 lov (1+√2)-1]/[√2π-2) log (1+√2)]=0.3595…,where M(a, b), Q(a, b), and P(a, b) ave the Neuman-Sandor, quadratic, and first Seiffert means of a and b, respectively.
文摘In this paper we establish L^q inequalities for polynomials, which in particular yields interesting generalizations of some Zygmund-type inequalities.