The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experime...The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experiments, the vortex and the environment are perturbed separately (named BGMV and BGME). Tropical cyclone (TC) motions in two difficult situations are studied: a large vortex interacting with its environment, and an apparent binary interaction. The former is Typhoon Yancy and the latter involves Typhoon Ed and super Typhoon Flo, all occurring during the Tropical Cyclone Motion Experiment TCM- 90. The model used is the baroclinic model of the University of New South Wales. The lateral boundary tendencies are computed from atmospheric analysis data. Only the relative skill of the ensemble forecast mean over the control run is used to evaluate the effectiveness of the EF methods, although the EF technique is also usecl to quantify forecast uncertainty in some studies. In the case of Yancy, the ensemble mean forecasts of each of the three methodologies are better than that of the control, with LAF being the best. The mean track of the LAF is close to the best track, and it predicts landfall over Taiwan. The improvements in LAF and the full BGM where both the environment and vortex are perturbed suggest the importance of combining the perturbation of the vortex and environment when the interaction between the two is appreciable. In the binary interaction case of Ed and Flo, the forecasts of Ed appear to be insensitive to perturbations of the environment and/or the vortex, which apparently results from erroneous forecasts by the model of the interaction between the subtropical ridge and Ed, as well as from the interaction between the two typhoons, thus reducing the effectiveness of the EF technique. This conclusion is reached through sensitivity experiments on the domain of the model and by adding or eliminating certain features in the model atmosphere. Nevertheless, the forecast tracks in some of the cases are improved over that of the control. On the other hand, the EF technique has little impact on the forecasts of Flo because the control forecast is already very close to the best track. The study provides a basis for the. future development of the EF technique. The limitations of this study are also addressed. For example, the above results are based on a small sample, and the study is actually a simulation, which is different than operational forecasting. Further tests of these EF techniques are proposed.展开更多
Based on the fast algorithm of meteorological satellite guide wind vector tracing, cloud motion wind vector is calculated. According to the different characteristics of cloud motion wind field and sounding wind field,...Based on the fast algorithm of meteorological satellite guide wind vector tracing, cloud motion wind vector is calculated. According to the different characteristics of cloud motion wind field and sounding wind field, a method which fuses conventional data with unconventional data based on variation principle is presented. The fundamental is constructing a cost function that makes the value approach conventional data and the gradient approach unconventional data. Using this method, the conventional wind and the cloud motion wind are fused. The fused wind field has high resolu- tion. Its wind direction approaches cloud motion wind which indicates move direction of the synoptic system, and its velocity approaches conventional wind which indicates move velocity of the synoptic system. The wind field data are used for short-time forecast of severe convective weather location, which gets a good result.展开更多
Statistical study is first performed of the efficiency of the technique of statistical interpretation using the products of NWP. The result shows that the application of the technique has improved the predictabilily o...Statistical study is first performed of the efficiency of the technique of statistical interpretation using the products of NWP. The result shows that the application of the technique has improved the predictabilily of predictors in objective forecasting of tropical cyclone motion, increased the forecasting skill of models and extended the valid period of forecast. Then a discussion is made of some technical problems in the application in the motion forecasting, suggesting: a large sample of data and perfect forecast method be employed in constructing objective forecast models for tropical cyclone motion, predictors be included that are so finely built that they reflect all synoptic features and physical quantity fields and NWP products be used and corrected that are available at multiple times. It is one of the effective ways to improve the skill and stability of the forecast by composite use of outcomes from various forecasting models.展开更多
As shown in a statistical analysis of the relationship between environmental fields at varied timeand tropical cyclone motion, the forecasting ability of the initisl environmental field predictors for tropical cyclone...As shown in a statistical analysis of the relationship between environmental fields at varied timeand tropical cyclone motion, the forecasting ability of the initisl environmental field predictors for tropical cyclone motion decreases with the increase of valid time period of forecast;it is higher with these predictors at a fUture time than at an initial time. The work also indicates that for the tropical cyclone motion over a given period of valid forecast, better predictors appear at times mostly differing from thevalid periods; for periods at 48-120 h the environmental predictors at 48-72 h are m0re capable of forecasting. With statistical interpretation of NWP products, a predictive model for tropical cyclone motionis superior in performance over a statistical forecasting model that employes predictors of the initial field in the basic framework. The concluding remarks can be used as reference in the construction of an objective prediction model for tropical cyclone motion.展开更多
Ensemble forecasting of tropical cyclone (TC) motion was studied using a primitive equation barotropic model by perturbing initial position and structure for 1979 1993 TC. The results show that TC initial position per...Ensemble forecasting of tropical cyclone (TC) motion was studied using a primitive equation barotropic model by perturbing initial position and structure for 1979 1993 TC. The results show that TC initial position perturbation affects its track, but the ensemble mean is close to control forecast. Experiments was also performed by perturbing TC initial parameters which were used to generate TC initial field, and more improvement can be obtained by taking ensemble mean of selective member than selecting members randomly. The skill of 60 % 70 % of all cases is improved in selective ensemble mean. When the ambient steering current is weak, more improvement can be obtained over the control forecast.展开更多
Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appea...Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appearance variations. A multiple template method to track fast motion target with appearance changes is presented under the framework of appearance model with Kalman filter. Firstly, we construct a multiple template appearance model, which includes both the original template and templates affinely transformed from original one. Generally speaking, appearance variations of fast motion target can be covered by affine transformation. Therefore, the affine tr templates match the target of appearance variations better than conventional models. Secondly, we present an improved Kalman filter for approx- imate estimating the motion trail of the target and a modified similarity evaluation function for exact matching. The estimation approach can reduce time complexity of the algorithm and keep accuracy in the meantime. Thirdly, we propose an adaptive scheme for updating template set to alleviate the drift problem. The scheme considers the following differences: the weight differences in two successive frames; different types of affine transformation applied to templates. Finally, experiments demonstrate that the proposed algorithm is robust to appearance varia- tion of fast motion target and achieves real-time performance on middle/low-range computing platform.展开更多
The general structure of ship-borne helicopter landing forecast system is presented, and a novel ship motion prediction model based on minor component analysis (MCA) is built up to improve the forecast effectiveness. ...The general structure of ship-borne helicopter landing forecast system is presented, and a novel ship motion prediction model based on minor component analysis (MCA) is built up to improve the forecast effectiveness. To validate the feasibility of this landing forecast system, time series for the roll, pitch and heave are generated by simulation and then forecasted based on MCA. Simulation results show that ship-borne helicopters can land safely in higher sea condition while carrying on rescue or replenishment tasks at sea in terms of the landing forecast system.展开更多
During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead...During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead zones and control system time lags,which necessitate the development of reasonable prediction models for ship heave movements.In this paper,a novel model based on a time graph convolutional neural network algorithm and particle swarm optimization algorithm(PSO-TGCN)is proposed for the first time to predict the multipoint heave movements of ships under different sea conditions.To enhance the dataset's suitability for training and reduce interference,various filter algorithms are employed to optimize the dataset.The training process utilizes simulated heave data under different sea conditions and measured heave data from multiple points.The results show that the PSO-TGCN model predicts the ship swaying motion in different sea states after 2 s with 84.7%accuracy,while predicting the swaying motion in three different positions.By performing a comparative study,it was also found that the present method achieves better performance that other popular methods.This model can provide technical support for intelligent ship control,improve the control accuracy of intelligent ships,and promote the development of intelligent ships.展开更多
In order to realize high accuracy control for periodic motion,a hybrid controller with grey prediction was presented in this paper.Incorporating the grey prediction,repetitive control,and the traditional Proportional-...In order to realize high accuracy control for periodic motion,a hybrid controller with grey prediction was presented in this paper.Incorporating the grey prediction,repetitive control,and the traditional Proportional-Integral-Differential(PID)control,a design method of the grey prediction repetitive PID(GRPID)control algorithm was investigated,according to the characteristics of the periodic motion control.The hybrid control algorithm can estimate unsure parameters and disturbance of system using grey prediction,and compensate control in terms of the prediction results,and this may improve control quality and robustness of repetitive control for controlling periodic motion.An example was carried out to verify the feasibility of the controller.The simulation results show that this algorithm has better performances than that of the conventional repetitive control system.It indicates the presented control method is more suitable for control system of periodic motion.展开更多
The main business of Life Insurers is Long Term contractual obligations with a typical lifetime of 20 - 40 years. Therefore, the Solvency metric is defined by the adequacy of capital to service the cash flow requireme...The main business of Life Insurers is Long Term contractual obligations with a typical lifetime of 20 - 40 years. Therefore, the Solvency metric is defined by the adequacy of capital to service the cash flow requirements arising from the said obligations. The main component inducing volatility in Capital is market sensitive Assets, such as Bonds and Equity. Bond and Equity prices in Sri Lanka are highly sensitive to macro-economic elements such as investor sentiment, political stability, policy environment, economic growth, fiscal stimulus, utility environment and in the case of Equity, societal sentiment on certain companies and industries. Therefore, if an entity is to accurately forecast the impact on solvency through asset valuation, the impact of macro-economic variables on asset pricing must be modelled mathematically. This paper explores mathematical, actuarial and statistical concepts such as Brownian motion, Markov Processes, Derivation and Integration as well as Probability theorems such as the Probability Density Function in determining the optimum mathematical model which depicts the accurate relationship between macro-economic variables and asset pricing.展开更多
文摘The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experiments, the vortex and the environment are perturbed separately (named BGMV and BGME). Tropical cyclone (TC) motions in two difficult situations are studied: a large vortex interacting with its environment, and an apparent binary interaction. The former is Typhoon Yancy and the latter involves Typhoon Ed and super Typhoon Flo, all occurring during the Tropical Cyclone Motion Experiment TCM- 90. The model used is the baroclinic model of the University of New South Wales. The lateral boundary tendencies are computed from atmospheric analysis data. Only the relative skill of the ensemble forecast mean over the control run is used to evaluate the effectiveness of the EF methods, although the EF technique is also usecl to quantify forecast uncertainty in some studies. In the case of Yancy, the ensemble mean forecasts of each of the three methodologies are better than that of the control, with LAF being the best. The mean track of the LAF is close to the best track, and it predicts landfall over Taiwan. The improvements in LAF and the full BGM where both the environment and vortex are perturbed suggest the importance of combining the perturbation of the vortex and environment when the interaction between the two is appreciable. In the binary interaction case of Ed and Flo, the forecasts of Ed appear to be insensitive to perturbations of the environment and/or the vortex, which apparently results from erroneous forecasts by the model of the interaction between the subtropical ridge and Ed, as well as from the interaction between the two typhoons, thus reducing the effectiveness of the EF technique. This conclusion is reached through sensitivity experiments on the domain of the model and by adding or eliminating certain features in the model atmosphere. Nevertheless, the forecast tracks in some of the cases are improved over that of the control. On the other hand, the EF technique has little impact on the forecasts of Flo because the control forecast is already very close to the best track. The study provides a basis for the. future development of the EF technique. The limitations of this study are also addressed. For example, the above results are based on a small sample, and the study is actually a simulation, which is different than operational forecasting. Further tests of these EF techniques are proposed.
文摘Based on the fast algorithm of meteorological satellite guide wind vector tracing, cloud motion wind vector is calculated. According to the different characteristics of cloud motion wind field and sounding wind field, a method which fuses conventional data with unconventional data based on variation principle is presented. The fundamental is constructing a cost function that makes the value approach conventional data and the gradient approach unconventional data. Using this method, the conventional wind and the cloud motion wind are fused. The fused wind field has high resolu- tion. Its wind direction approaches cloud motion wind which indicates move direction of the synoptic system, and its velocity approaches conventional wind which indicates move velocity of the synoptic system. The wind field data are used for short-time forecast of severe convective weather location, which gets a good result.
文摘Statistical study is first performed of the efficiency of the technique of statistical interpretation using the products of NWP. The result shows that the application of the technique has improved the predictabilily of predictors in objective forecasting of tropical cyclone motion, increased the forecasting skill of models and extended the valid period of forecast. Then a discussion is made of some technical problems in the application in the motion forecasting, suggesting: a large sample of data and perfect forecast method be employed in constructing objective forecast models for tropical cyclone motion, predictors be included that are so finely built that they reflect all synoptic features and physical quantity fields and NWP products be used and corrected that are available at multiple times. It is one of the effective ways to improve the skill and stability of the forecast by composite use of outcomes from various forecasting models.
文摘As shown in a statistical analysis of the relationship between environmental fields at varied timeand tropical cyclone motion, the forecasting ability of the initisl environmental field predictors for tropical cyclone motion decreases with the increase of valid time period of forecast;it is higher with these predictors at a fUture time than at an initial time. The work also indicates that for the tropical cyclone motion over a given period of valid forecast, better predictors appear at times mostly differing from thevalid periods; for periods at 48-120 h the environmental predictors at 48-72 h are m0re capable of forecasting. With statistical interpretation of NWP products, a predictive model for tropical cyclone motionis superior in performance over a statistical forecasting model that employes predictors of the initial field in the basic framework. The concluding remarks can be used as reference in the construction of an objective prediction model for tropical cyclone motion.
文摘Ensemble forecasting of tropical cyclone (TC) motion was studied using a primitive equation barotropic model by perturbing initial position and structure for 1979 1993 TC. The results show that TC initial position perturbation affects its track, but the ensemble mean is close to control forecast. Experiments was also performed by perturbing TC initial parameters which were used to generate TC initial field, and more improvement can be obtained by taking ensemble mean of selective member than selecting members randomly. The skill of 60 % 70 % of all cases is improved in selective ensemble mean. When the ambient steering current is weak, more improvement can be obtained over the control forecast.
基金Supported by the National Science Foundation of China(61472289)Hubei Province Science Foundation(2015CFB254)
文摘Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appearance variations. A multiple template method to track fast motion target with appearance changes is presented under the framework of appearance model with Kalman filter. Firstly, we construct a multiple template appearance model, which includes both the original template and templates affinely transformed from original one. Generally speaking, appearance variations of fast motion target can be covered by affine transformation. Therefore, the affine tr templates match the target of appearance variations better than conventional models. Secondly, we present an improved Kalman filter for approx- imate estimating the motion trail of the target and a modified similarity evaluation function for exact matching. The estimation approach can reduce time complexity of the algorithm and keep accuracy in the meantime. Thirdly, we propose an adaptive scheme for updating template set to alleviate the drift problem. The scheme considers the following differences: the weight differences in two successive frames; different types of affine transformation applied to templates. Finally, experiments demonstrate that the proposed algorithm is robust to appearance varia- tion of fast motion target and achieves real-time performance on middle/low-range computing platform.
文摘The general structure of ship-borne helicopter landing forecast system is presented, and a novel ship motion prediction model based on minor component analysis (MCA) is built up to improve the forecast effectiveness. To validate the feasibility of this landing forecast system, time series for the roll, pitch and heave are generated by simulation and then forecasted based on MCA. Simulation results show that ship-borne helicopters can land safely in higher sea condition while carrying on rescue or replenishment tasks at sea in terms of the landing forecast system.
基金financially supported by the National Key Research and Development Program of China (Grant No.2022YFE010700)the National Natural Science Foundation of China (Grant No.52171259)+1 种基金the High-Tech Ship Research Project of Ministry of Industry and Information Technology (Grant No.[2021]342)Foundation of State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No.GKZD010086-2)。
文摘During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead zones and control system time lags,which necessitate the development of reasonable prediction models for ship heave movements.In this paper,a novel model based on a time graph convolutional neural network algorithm and particle swarm optimization algorithm(PSO-TGCN)is proposed for the first time to predict the multipoint heave movements of ships under different sea conditions.To enhance the dataset's suitability for training and reduce interference,various filter algorithms are employed to optimize the dataset.The training process utilizes simulated heave data under different sea conditions and measured heave data from multiple points.The results show that the PSO-TGCN model predicts the ship swaying motion in different sea states after 2 s with 84.7%accuracy,while predicting the swaying motion in three different positions.By performing a comparative study,it was also found that the present method achieves better performance that other popular methods.This model can provide technical support for intelligent ship control,improve the control accuracy of intelligent ships,and promote the development of intelligent ships.
基金Science Fund of Shanghai Institute of Technology,China(No.YJ200609)
文摘In order to realize high accuracy control for periodic motion,a hybrid controller with grey prediction was presented in this paper.Incorporating the grey prediction,repetitive control,and the traditional Proportional-Integral-Differential(PID)control,a design method of the grey prediction repetitive PID(GRPID)control algorithm was investigated,according to the characteristics of the periodic motion control.The hybrid control algorithm can estimate unsure parameters and disturbance of system using grey prediction,and compensate control in terms of the prediction results,and this may improve control quality and robustness of repetitive control for controlling periodic motion.An example was carried out to verify the feasibility of the controller.The simulation results show that this algorithm has better performances than that of the conventional repetitive control system.It indicates the presented control method is more suitable for control system of periodic motion.
文摘The main business of Life Insurers is Long Term contractual obligations with a typical lifetime of 20 - 40 years. Therefore, the Solvency metric is defined by the adequacy of capital to service the cash flow requirements arising from the said obligations. The main component inducing volatility in Capital is market sensitive Assets, such as Bonds and Equity. Bond and Equity prices in Sri Lanka are highly sensitive to macro-economic elements such as investor sentiment, political stability, policy environment, economic growth, fiscal stimulus, utility environment and in the case of Equity, societal sentiment on certain companies and industries. Therefore, if an entity is to accurately forecast the impact on solvency through asset valuation, the impact of macro-economic variables on asset pricing must be modelled mathematically. This paper explores mathematical, actuarial and statistical concepts such as Brownian motion, Markov Processes, Derivation and Integration as well as Probability theorems such as the Probability Density Function in determining the optimum mathematical model which depicts the accurate relationship between macro-economic variables and asset pricing.