Acquisition footprint is a new concept to describe the seismic noise in three-dimensional seismic exploration and it is closely related to geometry and observation shuttering. At present, the study on acquisition foot...Acquisition footprint is a new concept to describe the seismic noise in three-dimensional seismic exploration and it is closely related to geometry and observation shuttering. At present, the study on acquisition footprints has become a hot spot. In partnership with the Dagang Oilfield, we used the channel sand body seismic physical model to study the characteristics of wide/narrow azimuth acquisition footprints and analyzed and compared the two types of footprints and their effects on target imaging. In addition, the footprints caused by data processing of the normal moveout offset (NMO) stretching aberration were discussed. These footprints are located only in the shallow or middle layer in the time slice, and possibly affect the imaging of shallow target layers, and have no influence on deep target imaging. Seismic physical modeling has its advantages in the study of acquisition footprints.展开更多
The</span><span style="font-family:""> </span><span style="font-family:Verdana;">western part of north Tarim Uplift underwent multi-stage tectonic movement and multiple...The</span><span style="font-family:""> </span><span style="font-family:Verdana;">western part of north Tarim Uplift underwent multi-stage tectonic movement and multiple stages of magmatism.</span><span style="font-family:""> </span><span style="font-family:Verdana;">Igneous rocks are associated with carbonate and buried deep.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The seismic response characteristics of igneous rocks are similar in many respects to the seismic response characteristics of karst, making the identification and prediction of igneous rocks more difficult.</span><span style="font-family:""> </span><span style="font-family:Verdana;">This study compares the seismic reflection characteristics of igneous rocks. Set up three types of igneous rock seismic facies model penetration type, fracture type and central type</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">And it concluded that a time-slice, coherence analysis, analysis of the seismic properties of the layers and the method of three-dimensional engraving to identify the igneous rocks. This method has been applied to the identification and prediction of carbonate rock buried </span><span style="font-family:Verdana;">and </span><span style="font-family:Verdana;">hill igneous rocks in the north Tarim basin YingMaiLi region and has achieved good results.展开更多
基金Heterogeneous formation geophysical response characteristics (973 Program, subject number: 2007CB209601)Continental reservoir seismic physical model (CNPC Fundamental Research Projects, subject number: 06A10102)
文摘Acquisition footprint is a new concept to describe the seismic noise in three-dimensional seismic exploration and it is closely related to geometry and observation shuttering. At present, the study on acquisition footprints has become a hot spot. In partnership with the Dagang Oilfield, we used the channel sand body seismic physical model to study the characteristics of wide/narrow azimuth acquisition footprints and analyzed and compared the two types of footprints and their effects on target imaging. In addition, the footprints caused by data processing of the normal moveout offset (NMO) stretching aberration were discussed. These footprints are located only in the shallow or middle layer in the time slice, and possibly affect the imaging of shallow target layers, and have no influence on deep target imaging. Seismic physical modeling has its advantages in the study of acquisition footprints.
文摘The</span><span style="font-family:""> </span><span style="font-family:Verdana;">western part of north Tarim Uplift underwent multi-stage tectonic movement and multiple stages of magmatism.</span><span style="font-family:""> </span><span style="font-family:Verdana;">Igneous rocks are associated with carbonate and buried deep.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The seismic response characteristics of igneous rocks are similar in many respects to the seismic response characteristics of karst, making the identification and prediction of igneous rocks more difficult.</span><span style="font-family:""> </span><span style="font-family:Verdana;">This study compares the seismic reflection characteristics of igneous rocks. Set up three types of igneous rock seismic facies model penetration type, fracture type and central type</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">And it concluded that a time-slice, coherence analysis, analysis of the seismic properties of the layers and the method of three-dimensional engraving to identify the igneous rocks. This method has been applied to the identification and prediction of carbonate rock buried </span><span style="font-family:Verdana;">and </span><span style="font-family:Verdana;">hill igneous rocks in the north Tarim basin YingMaiLi region and has achieved good results.