期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Seismicity acceleration model and its application to several earthquake regions in China 被引量:2
1
作者 杨文政 马丽 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期35-45,共11页
With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates... With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates: North China Subplate, Chuan Dian Block and Xinjiang Subplate, and divide the three subplates into seven researched regions by the difference of seismicity and tectonic conditions. With the modified equation given by Sornette and Sammis (1995), we analysis the seismicity of each region. To those strong earthquakes already occurred in these region, the model can give close fitting of magnitude and occurrence time, and the result in this article indicates that the seismicity acceleration model can also be used for describing the seismicity of intraplate. In the article, we give the magnitude and occurrence time of possible strong earthquakes in Shanxi, Ordos, Bole Tuokexun, Ayinke Wuqia earthquake regions. In the same subplate or block, the earthquake periods for each earthquake region are similar in time interval. The constant α in model can be used to describe the intensity of regional seismicity, and for the Chinese Mainland, α is 0.4 generally. To the seismicity in Taiwan and other regions with complex tectonic conditions, the model does not fit well at present. 展开更多
关键词 seismicity acceleration model subcritical crack growth China earthquake region fit
下载PDF
Stochastic seismic response of multi-layered soil with random layer heights 被引量:1
2
作者 M.Badaoui M.K.Berrah A.Mébarki 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期213-221,共9页
This paper deals with the effect of layer height randomness on the seismic response of a layered soil. These parameters are assumed to be lognormal random variables. The analysis is carried out via Monte Carlo simulat... This paper deals with the effect of layer height randomness on the seismic response of a layered soil. These parameters are assumed to be lognormal random variables. The analysis is carried out via Monte Carlo simulations coupled with the stiffness matrix method. A parametric study is conducted to derive the stochastic behavior of the peak ground acceleration and its response spectrum,the transfer function and the amplification factors. The input soil characteristics correspond to a site in Mexico City and the input seismic accelerations correspond to the Loma Prieta earthquake. It is found that the layer height heterogeneity causes a widening of the frequency content and a slight increase in the fundamental frequency of the soil profile,indicating that the resonance phenomenon is a concern for a large number of structures. Variation of the layer height randomness acts as a variation of the incident angle,i.e.,a decrease of the amplitude and a shift of the resonant frequencies. 展开更多
关键词 random layer heights layered soil seismic acceleration lognormal distribution amplification factors Mexico City
下载PDF
Modelling spiky acceleration response of dilative sand deposits during earthquakes with emphasis on large post-liquefaction deformation 被引量:2
3
作者 Wang Gang Wei Xing John Zhao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期125-138,共14页
The acceleration records at some liquefied sand deposits exhibit a distinctive spiky waveform, characterized by strong amplification and high-frequency components. A comprehensive constitutive model was used to analyz... The acceleration records at some liquefied sand deposits exhibit a distinctive spiky waveform, characterized by strong amplification and high-frequency components. A comprehensive constitutive model was used to analyze the mechanism of such spiky acceleration responses. An idealized single-degree-of-freedom(SDF) system was constructed, in which the force-displacement relation of the spring follows the stress-strain behavior of saturated sand during undrained shearing. The SDF system demonstrated that the spikes are directly related to the strain-hardening behavior of sand during post-liquefaction cyclic shearing. Furthermore, there exists a threshold shear strain length, which is in accordance with the limited amplitude of the fluid-like shear strain generated at instantaneous zero effective stress state during the post-liquefaction stage. The spiky acceleration can only occur when the cyclic shear strain exceeds the threshold shear strain length. It is also revealed that the time intervals between the acceleration spikes increase gradually along with the continuation of shaking because the threshold shear strain length increases gradually and then more time is needed to generate larger shear strain to cause strain hardening. Records at the Kushiro Port site and Port Island site during past earthquakes are simulated through the fully coupled method to validate the presented mechanism. 展开更多
关键词 spiky acceleration cyclic mobility post-liquefaction seismic response sand
下载PDF
Dynamic Behavior of Double-Row Pre-stressed Anchor Piles under Earthquake Conditions
4
作者 刘昌清 陶云辉 李想 《Journal of Southwest Jiaotong University(English Edition)》 2010年第2期118-123,共6页
To investigate the seismic performance of the double-row pre-stressed anchor piles (DRPAPs) on the Yuxi-Mengzi railway, FLAC3D was used to construct a three-dimensional model. Using Koyna earthquake records as input... To investigate the seismic performance of the double-row pre-stressed anchor piles (DRPAPs) on the Yuxi-Mengzi railway, FLAC3D was used to construct a three-dimensional model. Using Koyna earthquake records as input motions, dynamic time-history analyses were carried out. In the analyses, we compared earth pressure on the front and back of the piles and deformation of the piles under different seismic forces with or without anchor cables. With the anchor cable present, the earth pressure on the back of the pile's free section increases, but that on the back of the pile's anchorage section decreases. Also, with anchor cables, the earth pressure on the front of the upper pile decreases, and that on the back of the lower pile decreases. 展开更多
关键词 Anchor pile seismic acceleration Dynamic analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部