When the sliding bearing is fixed only at the top of the middle column of the underground structure,the cracks at the side end of the middle plate should be aggravated while the seismic damage of the mid-column should...When the sliding bearing is fixed only at the top of the middle column of the underground structure,the cracks at the side end of the middle plate should be aggravated while the seismic damage of the mid-column should be alleviated.To enhance the seismic performance of the mid-plate,a new isolation design method has been mentioned while the elastic sliding bearings are set at the top of the mid-columns and between the side end of the mid-plate and the side wall at the same time.By establishing a nonlinear finite element analysis model for the static-dynamic coupling interaction system,the seismic response characteristics of the cast-in-place station structure without a sliding bearing have been analyzed and compared with those of the station structure with the sliding bearing fixed only at the top of the middle columns,and those of the station structure with sliding bearing be fixed between the mid-plate and the sidewall at the same time.The results show that the new isolation station structures suffer fewer earthquake damages at the mid-plate and mid-columns at the same time,which can improve the overall seismic performance of the subway station structure.展开更多
Viscous dampers are widely used as passive energy dissipation devices for long-span cable-stayed bridges for mitigation of seismic load-induced vibrations.However,complicated finite element(FE)modeling,together with r...Viscous dampers are widely used as passive energy dissipation devices for long-span cable-stayed bridges for mitigation of seismic load-induced vibrations.However,complicated finite element(FE)modeling,together with repetitive and computationally intensive nonlinear time-history analyses(NTHAs)are generally required in conventional design methods.To streamline the preliminary design process,this paper developed a simplified longitudinal double degree of freedom model(DDFM)for single and symmetric twin-tower cable-stayed bridges.Based on the proposed simplified longitudinal DDFM,the analytical equations for the relevant mass-and stiffness-related parameters and longitudinal natural frequencies of the structure were derived by using analytical and energy methods.Modeling of the relationship between the nonlinear viscous damper parameters and the equivalent damping ratio was achieved through the equivalent linearization method.Additionally,the analytical equations of longitudinal seismic responses for long-span cable-stayed bridges with nonlinear viscous dampers were derived.Based on the developed simplified DDFM and suggested analytical equations,this paper proposed a simplified calculation framework to achieve a simplified design method of nonlinear viscous damper parameters.Moreover,the effectiveness and applicability of the developed simplified longitudinal DDFM and the proposed calculation framework were further validated through numerical analysis of a practical cable-stayed bridge.Finally,the results indicated the following.1)For the obtained fundamental period and longitudinal stiffness,the differences between results of the simplified longitudinal DDFM and numerical analysis were only 2.05%and 1.5%,respectively.2)Relative calculation errors of the longitudinal girder-end displacement and bending moment of the bottom tower section of the bridge obtained from the simplified longitudinal DDFM were limited to less than 25%.3)The equivalent damping ratio of nonlinear viscous dampers and the applied loading frequency had significant effects on the longitudinal seismic responses of the bridge.Findings of this study may provide beneficial information for a design office to make a simplified preliminary design scheme to determine the appropriate nonlinear damper parameters and longitudinal seismic responses for long-span cable-stayed bridges.展开更多
In this paper, the development of the National Seismic Network of Malaysia is described first. Then, the maximum intensities on the Modified Mercalli (MM) scale experienced by Peninsular Malaysia and East Malaysia and...In this paper, the development of the National Seismic Network of Malaysia is described first. Then, the maximum intensities on the Modified Mercalli (MM) scale experienced by Peninsular Malaysia and East Malaysia and the damage to man-made structures caused by earthquakes are analyzed. Finally, the seismic risk management and strategy to mitigate seismic risk in Malaysia are outlined.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51778290,51978333)。
文摘When the sliding bearing is fixed only at the top of the middle column of the underground structure,the cracks at the side end of the middle plate should be aggravated while the seismic damage of the mid-column should be alleviated.To enhance the seismic performance of the mid-plate,a new isolation design method has been mentioned while the elastic sliding bearings are set at the top of the mid-columns and between the side end of the mid-plate and the side wall at the same time.By establishing a nonlinear finite element analysis model for the static-dynamic coupling interaction system,the seismic response characteristics of the cast-in-place station structure without a sliding bearing have been analyzed and compared with those of the station structure with the sliding bearing fixed only at the top of the middle columns,and those of the station structure with sliding bearing be fixed between the mid-plate and the sidewall at the same time.The results show that the new isolation station structures suffer fewer earthquake damages at the mid-plate and mid-columns at the same time,which can improve the overall seismic performance of the subway station structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.51978257 and 52278176)。
文摘Viscous dampers are widely used as passive energy dissipation devices for long-span cable-stayed bridges for mitigation of seismic load-induced vibrations.However,complicated finite element(FE)modeling,together with repetitive and computationally intensive nonlinear time-history analyses(NTHAs)are generally required in conventional design methods.To streamline the preliminary design process,this paper developed a simplified longitudinal double degree of freedom model(DDFM)for single and symmetric twin-tower cable-stayed bridges.Based on the proposed simplified longitudinal DDFM,the analytical equations for the relevant mass-and stiffness-related parameters and longitudinal natural frequencies of the structure were derived by using analytical and energy methods.Modeling of the relationship between the nonlinear viscous damper parameters and the equivalent damping ratio was achieved through the equivalent linearization method.Additionally,the analytical equations of longitudinal seismic responses for long-span cable-stayed bridges with nonlinear viscous dampers were derived.Based on the developed simplified DDFM and suggested analytical equations,this paper proposed a simplified calculation framework to achieve a simplified design method of nonlinear viscous damper parameters.Moreover,the effectiveness and applicability of the developed simplified longitudinal DDFM and the proposed calculation framework were further validated through numerical analysis of a practical cable-stayed bridge.Finally,the results indicated the following.1)For the obtained fundamental period and longitudinal stiffness,the differences between results of the simplified longitudinal DDFM and numerical analysis were only 2.05%and 1.5%,respectively.2)Relative calculation errors of the longitudinal girder-end displacement and bending moment of the bottom tower section of the bridge obtained from the simplified longitudinal DDFM were limited to less than 25%.3)The equivalent damping ratio of nonlinear viscous dampers and the applied loading frequency had significant effects on the longitudinal seismic responses of the bridge.Findings of this study may provide beneficial information for a design office to make a simplified preliminary design scheme to determine the appropriate nonlinear damper parameters and longitudinal seismic responses for long-span cable-stayed bridges.
文摘In this paper, the development of the National Seismic Network of Malaysia is described first. Then, the maximum intensities on the Modified Mercalli (MM) scale experienced by Peninsular Malaysia and East Malaysia and the damage to man-made structures caused by earthquakes are analyzed. Finally, the seismic risk management and strategy to mitigate seismic risk in Malaysia are outlined.