期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Forward prediction for tunnel geology and classification of surrounding rock based on seismic wave velocity layered tomography 被引量:2
1
作者 Bin Liu Jiansen Wang +2 位作者 Senlin Yang Xinji Xu Yuxiao Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期179-190,共12页
Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in fron... Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application. 展开更多
关键词 Tunnel geological forward-prospecting seismic wave velocity Layered inversion Surrounding rock classification Artificial neural network(ANN)
下载PDF
Numerical Simulation of the Response Features of Apparent Seismic Wave Velocity Ratio in a Horizontal Layered Medium
2
作者 Qian Jiadong Yu Xuejun +1 位作者 Cao Aimin Li Shaonong 《Earthquake Research in China》 2013年第4期427-439,共13页
This paper deals with the response features of AR(apparent ratio of seismic wave velocities to the changes of TR(true ratio of wave velocities)in the horizontal layered model by mathematical modeling.The results show ... This paper deals with the response features of AR(apparent ratio of seismic wave velocities to the changes of TR(true ratio of wave velocities)in the horizontal layered model by mathematical modeling.The results show that:(1)the response features of AR are associated with the parameters of the structure and its dynamic changes,and the relative position between the hypocenters and the monitoring networks,showing complicated patterns strongly related to the concrete paths of propagation of seismic waves from the source to the receiver in the observatories of the network;(2)the depth of the seismic source would have important influence on the response features of AR,especially the capacity to carry the anomalous information in the condition of the earth media,being in the anomalous state would be greater for those earthquakes which occur inside the anomalous layers than those underneath the anomalous layers;(3)the response features of AR are clearly related to the changes of TR(true ratio of wave velocities)instead of changes of wave velocities themselves,i.e.the response could be small as the changes in TR is small even in the case of large changes in the wave velocities.It is suggested that more attention must be paid to all these features in combination with detailed investigation of the velocity structure of the earth media in the study region and best fitting of precise hypocenter locations when one wants to obtain the reliable precursors from the changes in AR. 展开更多
关键词 Apparent ratio of seismic wave velocities True ratio of seismic wavevelocities Response features Simulation
下载PDF
Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective 被引量:9
3
作者 Qing-Yu Wang HuaJian Yao 《Earth and Planetary Physics》 CSCD 2020年第5期532-542,共11页
Over the past two decades,the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures.In addition,ambient noise-based monitoring has emerged because of the f... Over the past two decades,the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures.In addition,ambient noise-based monitoring has emerged because of the feasibility of reconstructing the continuous Green’s functions.Investigating the physical properties of a subsurface medium by tracking changes in seismic wave velocity that do not depend on the occurrence of earthquakes or the continuity of artificial sources dramatically increases the possibility of researching the evolution of crustal deformation.In this article,we outline some state-of-the-art techniques for noise-based monitoring,including moving-window cross-spectral analysis,the stretching method,dynamic time wrapping,wavelet cross-spectrum analysis,and a combination of these measurement methods,with either a Bayesian least-squares inversion or the Bayesian Markov chain Monte Carlo method.We briefly state the principles underlying the different methods and their pros and cons.By elaborating on some typical noisebased monitoring applications,we show how this technique can be widely applied in different scenarios and adapted to multiples scales.We list classical applications,such as following earthquake-related co-and postseismic velocity changes,forecasting volcanic eruptions,and tracking external environmental forcing-generated transient changes.By monitoring cases having different targets at different scales,we point out the applicability of this technology for disaster prediction and early warning of small-scale reservoirs,landslides,and so forth.Finally,we conclude with some possible developments of noise-based monitoring at present and summarize some prospective research directions.To improve the temporal and spatial resolution of passive-source noise monitoring,we propose integrating different methods and seismic sources.Further interdisciplinary collaboration is indispensable for comprehensively interpreting the observed changes. 展开更多
关键词 ambient noise correlation noise-based monitoring seismic wave velocity changes the evolution of physical properties of the crust
下载PDF
Analysis of the Wave Velocity Ratio Anomalies in the Tianshan Region of Xinjiang
4
作者 Zhang Linlin Gao Chaojun 《Earthquake Research in China》 CSCD 2017年第1期39-50,共12页
Based on the seismic observation report data provided by the Xinjiang Digital Seismic Network from 2009 to 2014,we calculate the wave velocity ratio and its background value for medium and small earthquakes by using t... Based on the seismic observation report data provided by the Xinjiang Digital Seismic Network from 2009 to 2014,we calculate the wave velocity ratio and its background value for medium and small earthquakes by using the multi-station method in Tianshan,Xinjiang.This paper analyzes the variation of the wave velocity ratio disturbance value to highlight the abnormal,and also back-traces 7 moderate earthquakes at the research area.The results show that:(1)the background value of the wave velocity ratio is almost 1.70,the wave velocity ratio obviously decreases in the middle-eastern part of Tianshan and the region near the Puchang fault;(2)the wave velocity ratio disturbance value is mostly low in the epicenter before four earthquakes of M≥5.0 from 2011 to 2013 in the study area;(3)before 7 moderate strong earthquakes,the earthquake events with low value of the wave velocity ratio account for over 60% of corresponding total events near the epicenters,and the low value of the wave velocity ratio is relatively obvious before moderate earthquakes. 展开更多
关键词 seismic observation report Multi-station method The wave velocity ratio disturbance value Tianshan region
下载PDF
Monitoring Media Velocity Variations with Coda Wave Interferometry
5
作者 Zhang Jinchuan Wang Qincai +1 位作者 Xue Bing Ding Lisha 《Earthquake Research in China》 CSCD 2015年第2期190-202,共13页
Multiply scattered waves are sensitive to media changes owing to the effect of repeated sampling,superposition and amplification. Based on this characteristic,small-medium changes could be detected by using coda wave ... Multiply scattered waves are sensitive to media changes owing to the effect of repeated sampling,superposition and amplification. Based on this characteristic,small-medium changes could be detected by using coda wave interferometry. In recent years,coda wave interferometry has been widely used in estimating velocity variation with high precision in areas such as seismology and non-destructive testing. This paper systematically presents the principle and research status of coda wave interferometry,and especial focus is placed on the research of media velocity variations by using repeating earthquakes,artificial sources,and ambient noise. Applications of coda wave interferometry can contribute to the more subtle understanding of dynamic evolution process in the medium. 展开更多
关键词 Coda wave interferometry Cross-correlation velocity variationsRepeating earthquake Ambient seismic noise
下载PDF
Rock-physics models of hydrate-bearing sediments in permafrost,Qilian Mountains,China 被引量:1
6
作者 刘杰 刘江平 +2 位作者 程飞 王京 刘肖肖 《Applied Geophysics》 SCIE CSCD 2017年第1期31-39,188,189,共11页
Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the... Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the seismic wave propagation in a two-phase medium to determine the elastic moduli of the composite medium. In the effective medium model, mode I, the hydrate is a component of the pore inclusions in mode I and in mode II it is a component of the matrix. First, the P-wave velocity, S-wave velocity, density, bulk modulus, and shear modulus of the sediment matrix are extracted from logging data.. Second, based on the physical properties of the main components of the sediments, rock-physics model is established using the K–T equation, and two additional rock-physics models are established assuming different hydrate-filling modes for the effective medium. The model and actual velocity data for the hydrate-bearing sediments are compared and it is found that the rock-physics model for the hydrate-filling mode II well reproduces the actual data. 展开更多
关键词 HYDRATES rock-physics seismic wave velocity density porosity
下载PDF
Applying accurate gradients of seismic wave reflection coefficients (SWRC) to the inversion of seismic wave velocities 被引量:3
7
作者 LIU FuPing MENG XianJun +2 位作者 XIAO JiaQi WANG YuMei SHEN GuoQiang 《Science China Earth Sciences》 SCIE EI CAS 2012年第12期1953-1960,共8页
Through solving the Zoeppritz's partial derivative equations, we have obtained accurate partial derivatives of reflected coefficients of seismic wave with respect to Pand S-wave velocities.With those partial deriv... Through solving the Zoeppritz's partial derivative equations, we have obtained accurate partial derivatives of reflected coefficients of seismic wave with respect to Pand S-wave velocities.With those partial derivatives, a multi-angle inversion is developed for seismic wave velocities.Numerical examples of different formation models show that if the number of iterations goes over 10, the relative error of inversion results is less than 1%, whether or not there is interference among the reflection waves.When we only have the reflected seismograms of P-wave, and only invert for velocities of P-wave, the multi-angle inversion is able to obtain a high computation precision.When we have the reflected seismograms of both P-wave and VS-wave, and simultaneously invert for the velocities of P-wave and VS-wave, the computation precisions of VS-wave velocities improves gradually with the increase of the number of angles, but the computation precision of P-wave velocities becomes worse.No matter whether the reflected seismic waves from the different reflection interface are coherent or non-coherent, this method is able to achieve a higher computation precision.Because it is based on the accurate solution of the gradient of SWRCs without any additional restriction, the multi-angle inversion method can be applied to seismic inversion of total angles.By removing the difficulties caused by simplified Zoeppritz formulas that the conventional AVO technology struggles with, the multiangle inversion method extended the application range of AVO technology and improved the computation precision and speed of inversion of seismic wave velocities. 展开更多
关键词 Zoeppritz’s partial derivative equations inversion of seismic wave velocity grads of seismic wave reflection coefficients (SWRCs) multi-angle inversion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部