To solve seismic wave scattering by a large-scale three-dimensional(3-D) hill topography, a fast parallel indirect boundary element method(IBEM) is developed by proposing a new construction method for the wave field, ...To solve seismic wave scattering by a large-scale three-dimensional(3-D) hill topography, a fast parallel indirect boundary element method(IBEM) is developed by proposing a new construction method for the wave field, modifying the generalized minimum residual(GMRES) algorithm and constructing an Open MP plus MPI parallel model. The validations of accuracy and efficiency show that this method can solve 3-D seismic response of a large-scale hill topography for broadband waves, and overcome the weakness of large storage and low efficiency of the traditional IBEM. Based on this new algorithm architecture, taking the broadband scattering of plane SV waves by a large-scale Gaussian-shaped hill of thousands-meters height as an example, the influence of several important parameters is investigated, including the incident frequency, the incident angle and the height-width and length-width ratio of the hill. The numerical results illustrate that the amplification effect on the ground motion by a near-hemispherical hill is more significant than the narrow hill. For low-frequency waves, the scattering effect of the higher hill is more pronounced, and there is only a single peak near the top of the hill. However, for high-frequency waves, rapid spatial variation of displacement amplitude appears on the hill surface.展开更多
This paper is organized as follows. After a discussion of the differential equations for wave propagation in the horizontally stratified medium and of the initial and boundary conditions, the displacements are derived...This paper is organized as follows. After a discussion of the differential equations for wave propagation in the horizontally stratified medium and of the initial and boundary conditions, the displacements are derived on the free surface of the layered medium for plane waves when a point source is located on the s-th imaginary boundary at the depth -s (physical parameters of the layers s and (s + 1) are put to be identical). Then, the source will be represented as a single force of arbitrary orientation and a general moment tensor point source. Further, "a primary field" for a point source will be introduced. Matrix method for the solution of the direct seismic problem is considered based on the matrix method of Thomson-Haskell and its modifications.展开更多
Shanghai is located in eastern China and is built on overburden soil layers. It can be seen from the Mexico M S=8.1 earthquake on September 19, 1985 and the Hanshin M S=7.4 earthquake on January 17,1995 that heavy cas...Shanghai is located in eastern China and is built on overburden soil layers. It can be seen from the Mexico M S=8.1 earthquake on September 19, 1985 and the Hanshin M S=7.4 earthquake on January 17,1995 that heavy casualties and property losses have a direct relationship with overburden soil layers. Ground motions caused by earthquakes are significantly amplified when passing through the soil layers. Under the influence of these amplified motions, building structures, whose nature frequency is within the frequency band of soil amplification response, will experience more severe damage than those built on bedrock. Therefore, engineering seismologists have paid considerable attention the amplification responses in the Shanghai overburden soil layers. The amplification responses of soil and sand layers in this paper are given by the M L=4.1 earthquake in Nantong, Jiangsu Province on December 25, 2001 at 31.8° N, 120.9° E. It can be seen that the responses of soil and sand layers are very different. That is important.展开更多
When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially trtmcated boundaries. In this paper, a damping factor refer...When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially trtmcated boundaries. In this paper, a damping factor referred to as the Gaussian dmping factor is proposed. The Gaussian damping factor is based on the idea of perfectly matched layers (PMLs). This work presents a detailed analysis of the theoretical foundations and advantages of the Gaussian damping factor. Additionally, numerical experiments for the simulation of seismic waves are presented based on two numerical models: a homogeneous model and a multi-layer model. The results show that the proposed factor works better. The Gaussian damping factor achieves a higher Signal-to-Noise Ratio (SNR) than previously used factors when using same number of PMLs, and requires less PMLs than other methods to achieve an identical SNR.展开更多
With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little at...With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little attention has been given to the change in seismic wave radiation when the fractured zone changes with the in-situ stress.In this study,the influences of in-situ stress on blast-induced rock fracture and seismic wave radiation are numerically investigated by a coupled SPH-FEM simulation method.The results show that the change in blast-induced rock fracture with in-situ stress has a considerable effect on the seismic wave energy and composition.As the in-situ stress level increases,the size of the fractured zone is significantly reduced,and more explosion energy is transformed into seismic energy.A reduction in the size of the fractured zone(seismic wave source zone)results in a higher frequency content of the seismic waves.In a nonhydrostatic in-situ stress field,blast-induced cracks are most suppressed in the direction of the minimum in-situ stress,and thus the seismic waves generated in this direction have the highest energy density.In addition to P-waves,Swaves are also generated when a circular explosive is detonated in a nonhydrostatic in-situ stress field.The S-waves result from the asymmetrical release of rock strain energy due to the anisotropic blast-induced fracture pattern.展开更多
Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D...Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.展开更多
The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale...The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale testing due to the expense and unpredictable danger. To solve this problem, the authors developed experimental apparatus and presented a laboratory method to simulate seismic waves induced by underground explosions. In this apparatus, a combined structure of a diffusive-shaped water capsule and a special-shaped oil capsule was designed. This structure can provide an applied confining stress and freely transmit the stress wave generated by external impact. Therefore, the coupled loading of in situ stress and seismic waves induced by underground explosions in the deep rock mass was simulated. The positive pressure time and peak value of the stress wave could be adjusted by changing the pulse-shaper and the initial impact energy. The obtained stress waves in the experiments correspond to that generated by 0.15-120 kt of TNT equivalent explosion at a scaled distance of 89.9-207.44 m/kt.展开更多
All underwater drilling and blasting operations generate seismic waves.However,due to a lack of suitable vibration sensing instruments,most studies on the propagation of seismic waves have been limited to shorelines n...All underwater drilling and blasting operations generate seismic waves.However,due to a lack of suitable vibration sensing instruments,most studies on the propagation of seismic waves have been limited to shorelines near construction areas or wharfs,whereas comparatively few studies have beerconducted on the larger seafloor itself.To address this gap,a seafloor vibration sensor system was developed and applied in this study that consists of an autonomous acquisition storage terminal,soft-ware platform,and hole-plugging device that was designed to record the blasting vibration intensities received through submarine rocks at a given measurement point.Additionally,dimensional analyses were used to derive a predictive equation for the strength of blast vibrations that considered the in fluence of the water depth.By combining reliable vibration data obtained using the sensor system in submarine rock and the developed predictive equation,it was determined that the water depth was ar important factor influencing the measured vibration strength.The results using the newly derivedequation were compared to those determined using the Sadowski equation,which is commonly used on land,and it was found that predictions using the derived equation were closer to the experimental values with an average error of less than 10%,representing a significant improvement.Based on these results the developed sensor system and preliminary theoretical basis was deemed suitable for studying the propagation behavior of submarine seismic waves generated by underwater drilling and blasting operations.展开更多
Elastic waves in the seabed generated by low-frequency noise radiating from ships are known as ship seismic waves and can be used to detect and identify ships. To obtain the propagation characteristics of ship seismic...Elastic waves in the seabed generated by low-frequency noise radiating from ships are known as ship seismic waves and can be used to detect and identify ships. To obtain the propagation characteristics of ship seismic waves, an algorithm for calculating Seismic waves at the seafloor is presented based on the staggered-grid finite difference method. The accuracy of the algorithm was tested by comparison with analytical solutions. Numerical simulation of seismic waves generated by a low-frequency point sotmd source in a typical shallow sea environment was carried out. Using various source frequencies and locations in the numerical simulation, we show that the seismic waves in the near field are composed mostly of transmitted S-waves and interface waves while transmitted P-waves are weak near the seafloor. However, in the far field, the wave components of the seismic wave are mainly normal modes and interface waves, with the latter being relatively strong in the waveforms, As the source frequency decreases, the normal modes become smaller and the interface waves dominate the time series of the seismic waves.展开更多
The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogen...The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.展开更多
In this paper, a transfer matrix and a three-dimensional dynamic response of a layered half-space to an arbitrary buried source are derived with the aid of a technique which combines the Laplace and two-dimensional Fo...In this paper, a transfer matrix and a three-dimensional dynamic response of a layered half-space to an arbitrary buried source are derived with the aid of a technique which combines the Laplace and two-dimensional Fourier transforms in a rectangular coordinate system. This method is clear in concept, and the corresponding formulas given in the paper are simple and convenient for marine seismic prospecting and other fields' applications. An example is presented and the calculated results are in good agreement with those of the finite element method (FEM).展开更多
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
Based on the multiphase poroelasticity theory describing the propagation of waves in the unsaturated fluid-saturated porous medium,the reflection and transmission coefficients of the seismic waves at the interface bet...Based on the multiphase poroelasticity theory describing the propagation of waves in the unsaturated fluid-saturated porous medium,the reflection and transmission coefficients of the seismic waves at the interface between soil layers with different saturations are obtained.Our unsaturated model consists of a deformable skeleton in which two compressible and viscous fluids(i.e.,water and gas)flow in the interstices.Three compressional waves(i.e.,P1,P2,and P3 waves)and one shear(i.e.,S wave)wave exist in the unsaturated soils.The expressions for the energy ratios of the various reflected and transmitted waves at the interface during the transmission and reflection processes are presented in explicit forms accordingly.At last,numerical computations are performed and the results obtained are respectively depicted graphically.The variation of the energy ratios with the incident angle,wave frequency and saturation degrees of the upper and lower soil layers is illustrated in detail.The calculation results show that the allocation of incident seismic waves at the interface is influenced not only by the angle and frequency of the incident seismic waves,but also by the saturations of the upper and lower soil layers.It is also verified that,at the interface,the sum of energy ratios of the reflected and transmitted waves is approximately equal to unity as was expected.This study is of importance to several fields such as geotechnical engineering,seismology,and geophysics.展开更多
Based on the modified Biot model for asturated soils, taking the compressibilities of the grains and the pore fluid as well as the viscous coupling into account, the reflection and transmission of seismic aves at an i...Based on the modified Biot model for asturated soils, taking the compressibilities of the grains and the pore fluid as well as the viscous coupling into account, the reflection and transmission of seismic aves at an interface between two saturated soils are studied in this paper. A formula is derived for calculation of the amplitude reflection and transmission coefficients of various waves. A aumerical investigation of the dependence of the coefficients on the angle of incidence and the frequency is performed. This study is of a value for seismological studies and geophysical exploration.展开更多
Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in fron...Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application.展开更多
In this paper a group of long period seismic waves in Shanghai area induced by Taiwan large earthquake is presented by using the method of semi empirical Green function, the period is up to 20 s. Such seismic waves c...In this paper a group of long period seismic waves in Shanghai area induced by Taiwan large earthquake is presented by using the method of semi empirical Green function, the period is up to 20 s. Such seismic waves can be used as a reference curve to test the strength of long period structures and their aseismic design. The long period part of seismic influence curve presented in 'Architecture Aseismic Design Code'(GBJ11 89) is less than 3 s, and uncertainties exist in the effects of earthquake safety evaluation. This research will be able to eliminate these shortages.展开更多
Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic E...Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic Eruptions, Faculty of Sciences, Tohoku University, Sendai 98077, Japan展开更多
In this study,A time-domain seismic response analysis method and a calculation model of the underground structure that can realize the input of seismic P,SV and Rayleigh waves are established,based on the viscoelastic...In this study,A time-domain seismic response analysis method and a calculation model of the underground structure that can realize the input of seismic P,SV and Rayleigh waves are established,based on the viscoelastic artificial boundary elements and the boundary substructure method for seismic wave input.After verifying the calculation accuracy,a comparative study on seismic response of a shallow-buried,double-deck,double-span subway station structure under incident P,SV and Rayleigh waves is conducted.The research results show that there are certain differences in the cross-sectional internal force distribution characteristics of underground structures under different types of seismic waves.The research results show that there are certain differences in the internal force distribution characteristics of underground structures under different types of seismic waves.At the bottom of the side wall,the top and bottom of the center pillar of the underground structure,the section bending moments of the underground structure under the incidences of SV wave and Rayleigh wave are relatively close,and are significantly larger than the calculation result under the incidence of P wave.At the center of the side wall and the top floor of the structure,the peak value of the cross-sectional internal force under the incident Rayleigh wave is larger than the calculation result under SV wave.In addition,the floor of the underground structure under Rayleigh waves vibrates in both the horizontal and vertical directions,and the magnification effect in the vertical direction is more significant.Considering that the current seismic research of underground structures mainly considers the effect of body waves such as the shear waves,sufficient attention should be paid to the incidence of Rayleigh waves in the future seismic design of shallow underground structures.展开更多
In this study, the ambient seismic noise cross-correlation technique is applied to estimate the upper structure of the crust beneath Great Island of Tierra del Fuego(TdF), Argentina, by the analysis of shortperiod R...In this study, the ambient seismic noise cross-correlation technique is applied to estimate the upper structure of the crust beneath Great Island of Tierra del Fuego(TdF), Argentina, by the analysis of shortperiod Rayleigh wave group velocities. The island, situated in the southernmost South America, is a key area of investigation among the interaction between the South American and Scotia plates and is considered as a very seismically active one. Through cross-correlating the vertical components of ambient seismic noise registered at four broadband stations in TdF, we were able to extract Rayleigh waves which were used to estimate group velocities in the period band of 2.5-16 s using a timefrequency analysis. Although ambient noise sources are distributed in homogeneously, robust empirical Green's functions could be recovered from the cross-correlation of 12 months of ambient noise, The observed group velocities were inverted considering a non-linear iterative damped least-squares inversion procedure and several 1-D shear wave velocity models of the upper crust were obtained.According to the inversion results, the S-wave velocity ranges between 1.75 and 3,7 km/s in the first10 km of crust, depending on the pair of stations considered. These results are in agreement to the major known surface and sub-surface geological and tectonic features known in the area. This study represents the first ambient seismic noise analysis in TdF in order to constraint the upper crust beneath this region.It can also be considered as a successful feasibility study for future analyses with a denser station deployment for a more detailed imaging of structure.展开更多
Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In ...Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In order to verify the prediction efficacy and accuracy of the seismic wave reflection method with different instruments and equipment(tunnel geological prediction[TGP]/tunnel seismic prediction[TSP])and different vibration modes(hammering,explosives),a comparison test was carried out in Jinping Tunnel.The test results showed that the time-consumption of the hammering source was short,which can greatly reduce the impact on the construction site;different vibration sources methods of seismic wave reflection can predict the unfavorable geological sections accurately.展开更多
基金National Natural Science Foundation of China under Grant No. 51678390National Natural Science Foundation of China under Grant No. 51708391the Major Science and Technology Projects in Tianjin under Grant No. 18ZXAQSF00110。
文摘To solve seismic wave scattering by a large-scale three-dimensional(3-D) hill topography, a fast parallel indirect boundary element method(IBEM) is developed by proposing a new construction method for the wave field, modifying the generalized minimum residual(GMRES) algorithm and constructing an Open MP plus MPI parallel model. The validations of accuracy and efficiency show that this method can solve 3-D seismic response of a large-scale hill topography for broadband waves, and overcome the weakness of large storage and low efficiency of the traditional IBEM. Based on this new algorithm architecture, taking the broadband scattering of plane SV waves by a large-scale Gaussian-shaped hill of thousands-meters height as an example, the influence of several important parameters is investigated, including the incident frequency, the incident angle and the height-width and length-width ratio of the hill. The numerical results illustrate that the amplification effect on the ground motion by a near-hemispherical hill is more significant than the narrow hill. For low-frequency waves, the scattering effect of the higher hill is more pronounced, and there is only a single peak near the top of the hill. However, for high-frequency waves, rapid spatial variation of displacement amplitude appears on the hill surface.
文摘This paper is organized as follows. After a discussion of the differential equations for wave propagation in the horizontally stratified medium and of the initial and boundary conditions, the displacements are derived on the free surface of the layered medium for plane waves when a point source is located on the s-th imaginary boundary at the depth -s (physical parameters of the layers s and (s + 1) are put to be identical). Then, the source will be represented as a single force of arbitrary orientation and a general moment tensor point source. Further, "a primary field" for a point source will be introduced. Matrix method for the solution of the direct seismic problem is considered based on the matrix method of Thomson-Haskell and its modifications.
文摘Shanghai is located in eastern China and is built on overburden soil layers. It can be seen from the Mexico M S=8.1 earthquake on September 19, 1985 and the Hanshin M S=7.4 earthquake on January 17,1995 that heavy casualties and property losses have a direct relationship with overburden soil layers. Ground motions caused by earthquakes are significantly amplified when passing through the soil layers. Under the influence of these amplified motions, building structures, whose nature frequency is within the frequency band of soil amplification response, will experience more severe damage than those built on bedrock. Therefore, engineering seismologists have paid considerable attention the amplification responses in the Shanghai overburden soil layers. The amplification responses of soil and sand layers in this paper are given by the M L=4.1 earthquake in Nantong, Jiangsu Province on December 25, 2001 at 31.8° N, 120.9° E. It can be seen that the responses of soil and sand layers are very different. That is important.
基金supported by the National Natural Science Foundation of China(No. 61072118)
文摘When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially trtmcated boundaries. In this paper, a damping factor referred to as the Gaussian dmping factor is proposed. The Gaussian damping factor is based on the idea of perfectly matched layers (PMLs). This work presents a detailed analysis of the theoretical foundations and advantages of the Gaussian damping factor. Additionally, numerical experiments for the simulation of seismic waves are presented based on two numerical models: a homogeneous model and a multi-layer model. The results show that the proposed factor works better. The Gaussian damping factor achieves a higher Signal-to-Noise Ratio (SNR) than previously used factors when using same number of PMLs, and requires less PMLs than other methods to achieve an identical SNR.
基金Projects(51969015,U1765207)supported by the National Natural Science Foundation of ChinaProjects(20192ACB21019,20181BAB206047)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little attention has been given to the change in seismic wave radiation when the fractured zone changes with the in-situ stress.In this study,the influences of in-situ stress on blast-induced rock fracture and seismic wave radiation are numerically investigated by a coupled SPH-FEM simulation method.The results show that the change in blast-induced rock fracture with in-situ stress has a considerable effect on the seismic wave energy and composition.As the in-situ stress level increases,the size of the fractured zone is significantly reduced,and more explosion energy is transformed into seismic energy.A reduction in the size of the fractured zone(seismic wave source zone)results in a higher frequency content of the seismic waves.In a nonhydrostatic in-situ stress field,blast-induced cracks are most suppressed in the direction of the minimum in-situ stress,and thus the seismic waves generated in this direction have the highest energy density.In addition to P-waves,Swaves are also generated when a circular explosive is detonated in a nonhydrostatic in-situ stress field.The S-waves result from the asymmetrical release of rock strain energy due to the anisotropic blast-induced fracture pattern.
基金Foundation item: Project(IRTl125) supported by the Program for Changjiang Scholars and Innovative Research Team in Universities of China Project(B13024) supported by the "111" Project Project(BK2012811) supported by the Natural Science Foundation of Jiangsu Province, China
文摘Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 51527810,51679249, 12002171 and 51909120)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_0312)。
文摘The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale testing due to the expense and unpredictable danger. To solve this problem, the authors developed experimental apparatus and presented a laboratory method to simulate seismic waves induced by underground explosions. In this apparatus, a combined structure of a diffusive-shaped water capsule and a special-shaped oil capsule was designed. This structure can provide an applied confining stress and freely transmit the stress wave generated by external impact. Therefore, the coupled loading of in situ stress and seismic waves induced by underground explosions in the deep rock mass was simulated. The positive pressure time and peak value of the stress wave could be adjusted by changing the pulse-shaper and the initial impact energy. The obtained stress waves in the experiments correspond to that generated by 0.15-120 kt of TNT equivalent explosion at a scaled distance of 89.9-207.44 m/kt.
文摘All underwater drilling and blasting operations generate seismic waves.However,due to a lack of suitable vibration sensing instruments,most studies on the propagation of seismic waves have been limited to shorelines near construction areas or wharfs,whereas comparatively few studies have beerconducted on the larger seafloor itself.To address this gap,a seafloor vibration sensor system was developed and applied in this study that consists of an autonomous acquisition storage terminal,soft-ware platform,and hole-plugging device that was designed to record the blasting vibration intensities received through submarine rocks at a given measurement point.Additionally,dimensional analyses were used to derive a predictive equation for the strength of blast vibrations that considered the in fluence of the water depth.By combining reliable vibration data obtained using the sensor system in submarine rock and the developed predictive equation,it was determined that the water depth was ar important factor influencing the measured vibration strength.The results using the newly derivedequation were compared to those determined using the Sadowski equation,which is commonly used on land,and it was found that predictions using the derived equation were closer to the experimental values with an average error of less than 10%,representing a significant improvement.Based on these results the developed sensor system and preliminary theoretical basis was deemed suitable for studying the propagation behavior of submarine seismic waves generated by underwater drilling and blasting operations.
基金Supported by the National Natural Science Foundation of China(Nos.51179195,51679248)the National Defense Foundation of China(No.513030203-02)
文摘Elastic waves in the seabed generated by low-frequency noise radiating from ships are known as ship seismic waves and can be used to detect and identify ships. To obtain the propagation characteristics of ship seismic waves, an algorithm for calculating Seismic waves at the seafloor is presented based on the staggered-grid finite difference method. The accuracy of the algorithm was tested by comparison with analytical solutions. Numerical simulation of seismic waves generated by a low-frequency point sotmd source in a typical shallow sea environment was carried out. Using various source frequencies and locations in the numerical simulation, we show that the seismic waves in the near field are composed mostly of transmitted S-waves and interface waves while transmitted P-waves are weak near the seafloor. However, in the far field, the wave components of the seismic wave are mainly normal modes and interface waves, with the latter being relatively strong in the waveforms, As the source frequency decreases, the normal modes become smaller and the interface waves dominate the time series of the seismic waves.
基金State National Science Foundation of China (grant No. 40134010).
文摘The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.
基金funded by the Natural Science Foundation Projeet of State(40174030)the Natural Science Foundation Project of Shandong Province(Y2000E05)
文摘In this paper, a transfer matrix and a three-dimensional dynamic response of a layered half-space to an arbitrary buried source are derived with the aid of a technique which combines the Laplace and two-dimensional Fourier transforms in a rectangular coordinate system. This method is clear in concept, and the corresponding formulas given in the paper are simple and convenient for marine seismic prospecting and other fields' applications. An example is presented and the calculated results are in good agreement with those of the finite element method (FEM).
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
基金supported by the National Natural Science Foundation of China(Grant No.51378258)the National Basic Research Program of China("973"Project)(Grant No.2011CB013601)
文摘Based on the multiphase poroelasticity theory describing the propagation of waves in the unsaturated fluid-saturated porous medium,the reflection and transmission coefficients of the seismic waves at the interface between soil layers with different saturations are obtained.Our unsaturated model consists of a deformable skeleton in which two compressible and viscous fluids(i.e.,water and gas)flow in the interstices.Three compressional waves(i.e.,P1,P2,and P3 waves)and one shear(i.e.,S wave)wave exist in the unsaturated soils.The expressions for the energy ratios of the various reflected and transmitted waves at the interface during the transmission and reflection processes are presented in explicit forms accordingly.At last,numerical computations are performed and the results obtained are respectively depicted graphically.The variation of the energy ratios with the incident angle,wave frequency and saturation degrees of the upper and lower soil layers is illustrated in detail.The calculation results show that the allocation of incident seismic waves at the interface is influenced not only by the angle and frequency of the incident seismic waves,but also by the saturations of the upper and lower soil layers.It is also verified that,at the interface,the sum of energy ratios of the reflected and transmitted waves is approximately equal to unity as was expected.This study is of importance to several fields such as geotechnical engineering,seismology,and geophysics.
文摘Based on the modified Biot model for asturated soils, taking the compressibilities of the grains and the pore fluid as well as the viscous coupling into account, the reflection and transmission of seismic aves at an interface between two saturated soils are studied in this paper. A formula is derived for calculation of the amplitude reflection and transmission coefficients of various waves. A aumerical investigation of the dependence of the coefficients on the angle of incidence and the frequency is performed. This study is of a value for seismological studies and geophysical exploration.
基金The research work described herein was funded by the National Natural Science Foundation of China(Grant No.51922067)The Key Research and Development Plan of Shandong Province of China(Grant No.2020ZLYS01)Taishan Scholars Program of Shan-dong Province of China(Grant No.tsqn201909003).
文摘Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application.
文摘In this paper a group of long period seismic waves in Shanghai area induced by Taiwan large earthquake is presented by using the method of semi empirical Green function, the period is up to 20 s. Such seismic waves can be used as a reference curve to test the strength of long period structures and their aseismic design. The long period part of seismic influence curve presented in 'Architecture Aseismic Design Code'(GBJ11 89) is less than 3 s, and uncertainties exist in the effects of earthquake safety evaluation. This research will be able to eliminate these shortages.
文摘Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic Eruptions, Faculty of Sciences, Tohoku University, Sendai 98077, Japan
基金supported by National Natural Science Foundation of China(Grant no.U1839201)China National Postdoctoral Program of Innovative Talents(Grant no.BX20200192)+1 种基金China Postdoctoral Science Foundation,China(2020M680575)Shuimu Tsinghua Scholar Program(Grant no.2020SM005)。
文摘In this study,A time-domain seismic response analysis method and a calculation model of the underground structure that can realize the input of seismic P,SV and Rayleigh waves are established,based on the viscoelastic artificial boundary elements and the boundary substructure method for seismic wave input.After verifying the calculation accuracy,a comparative study on seismic response of a shallow-buried,double-deck,double-span subway station structure under incident P,SV and Rayleigh waves is conducted.The research results show that there are certain differences in the cross-sectional internal force distribution characteristics of underground structures under different types of seismic waves.The research results show that there are certain differences in the internal force distribution characteristics of underground structures under different types of seismic waves.At the bottom of the side wall,the top and bottom of the center pillar of the underground structure,the section bending moments of the underground structure under the incidences of SV wave and Rayleigh wave are relatively close,and are significantly larger than the calculation result under the incidence of P wave.At the center of the side wall and the top floor of the structure,the peak value of the cross-sectional internal force under the incident Rayleigh wave is larger than the calculation result under SV wave.In addition,the floor of the underground structure under Rayleigh waves vibrates in both the horizontal and vertical directions,and the magnification effect in the vertical direction is more significant.Considering that the current seismic research of underground structures mainly considers the effect of body waves such as the shear waves,sufficient attention should be paid to the incidence of Rayleigh waves in the future seismic design of shallow underground structures.
基金scientific projects funded by the National Agency for the Promotion of Science and TechnologyArgentina(ANPCyT)+1 种基金the National University of La Plata,Argentina(UNLP)the National Institute of Oceanography and Experimental Geophysics,Italy(OGS)
文摘In this study, the ambient seismic noise cross-correlation technique is applied to estimate the upper structure of the crust beneath Great Island of Tierra del Fuego(TdF), Argentina, by the analysis of shortperiod Rayleigh wave group velocities. The island, situated in the southernmost South America, is a key area of investigation among the interaction between the South American and Scotia plates and is considered as a very seismically active one. Through cross-correlating the vertical components of ambient seismic noise registered at four broadband stations in TdF, we were able to extract Rayleigh waves which were used to estimate group velocities in the period band of 2.5-16 s using a timefrequency analysis. Although ambient noise sources are distributed in homogeneously, robust empirical Green's functions could be recovered from the cross-correlation of 12 months of ambient noise, The observed group velocities were inverted considering a non-linear iterative damped least-squares inversion procedure and several 1-D shear wave velocity models of the upper crust were obtained.According to the inversion results, the S-wave velocity ranges between 1.75 and 3,7 km/s in the first10 km of crust, depending on the pair of stations considered. These results are in agreement to the major known surface and sub-surface geological and tectonic features known in the area. This study represents the first ambient seismic noise analysis in TdF in order to constraint the upper crust beneath this region.It can also be considered as a successful feasibility study for future analyses with a denser station deployment for a more detailed imaging of structure.
文摘Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In order to verify the prediction efficacy and accuracy of the seismic wave reflection method with different instruments and equipment(tunnel geological prediction[TGP]/tunnel seismic prediction[TSP])and different vibration modes(hammering,explosives),a comparison test was carried out in Jinping Tunnel.The test results showed that the time-consumption of the hammering source was short,which can greatly reduce the impact on the construction site;different vibration sources methods of seismic wave reflection can predict the unfavorable geological sections accurately.