The distribution and formation mechanisms of typical identified seismites are analyzed based on various factors from plate tectonic positions, types of sedimentary basins and properties of seismogenic faults to focal ...The distribution and formation mechanisms of typical identified seismites are analyzed based on various factors from plate tectonic positions, types of sedimentary basins and properties of seismogenic faults to focal mechanisms.Especially, structural styles, reserved positions, activity times, formation mechanisms and dynamics of soft-sediment deformation structures triggered by seismic activity are systematically analyzed.According to the genetic types of seismites, we propose 5 categories, including liquefied deformation, thixotropic deformation, hydroplastic deformation, superimposed gravity driving deformation and brittle deformation.Further, based on the main genetic types, composition of sediments and deformation styles, we draw up 35 secondary classifications.To determine paleo-seismic sequences in different times, activities of seismogenic faults, high-resolution tectonic events in one main tectonic movement and paleo-tectonic settings, and to understand the inducing mechanisms of paleo-earthquakes and ecologic environment evolution, researching on seismites are of great significance.Combing multiple approaches to identify the paleoearthquake records, simulating experiments on various soft-sediment deformation structures triggered by different magnitudes of shocking, dating precisely on paleo-seismic events, impacting on paleogeography and biological environment and on energy and resources domain are the frontiers of paleoseismic research.展开更多
The Caledonian orogenic belt of the North Qilian Mountains is an intensely active structure belt. In the process of the Late Caledonian syn-orogeny, the North Qilian-Hexi Corridor area was situated on the tectonic bac...The Caledonian orogenic belt of the North Qilian Mountains is an intensely active structure belt. In the process of the Late Caledonian syn-orogeny, the North Qilian-Hexi Corridor area was situated on the tectonic background of a syn-orogenic basin. In response to the orogenic process of the North Qilian Mountains, typical earthquake event deposits—seismites of the Silurian were widely distributed around Hanxia of Yumen City, the Liyuan River of Sunan County and Biandukou of Minle County. In the Hanxia area, where seismites are typically developed, clastic deposits of tidal-flat facies are the background deposits of the Hanxia Formation. The earthquake event deposits are characterized by sandy mudstone veins, synsedimentary microfractures, micro-corrugated laminations and earthquake breccias, which in turn constitute complex seismites, featuring seismic corrugation, shattering and liquefied sandy mudstone veins, auto-clastic breccias and intraclastic parabreccias. The seismites and tidal flat deposits formed typical sequences of earthquake event deposits.展开更多
Soft-sediment deformation structures induced by seismic liquefaction and/or fluidization receive much attention in sedimentological,structural and palaeoseismic studies.The direct record of larger earthquakes is restr...Soft-sediment deformation structures induced by seismic liquefaction and/or fluidization receive much attention in sedimentological,structural and palaeoseismic studies.The direct record of larger earthquakes is restricted to instrumental and historical data; the recognition of prehistoric earthquakes requires criteria to recognize seismites in the geological record.The areal distribution of seismites can sometimes be related to active faults since distances to the epicenter(for a given magnitude) tend to be related to the liquefaction effects of seismic shocks.The use of soft-sediment deformation structures for palaeoseismic studies has limitations,however.Hardly anything is known,for instance,about the effects that modern seismic events have on the sediments in most environments.Moreover,criteria for the recognition of seismites are still under discussion.The following characteristics seem,particularly in combination,the most reliable:(1) Soft-sediment deformation structures should occur in laterally continuous,preferably recurring horizons,separated by undeformed beds;(2) These deformation structures should be comparable with structures known to have been triggered by modern seismic activity;(3) The sedimentary basin should have experienced tectonic activity at the time when the deformations were formed; and(4) The intensity or abundance of the soft-sediment deformation structures in a presumed seismite should change laterally,depending on the distance to the epicenter.It turns out that all of these four criteria have important exceptions.(1) Soft-sediment deformation structures occurring over large lateral distances in a specific layer can be triggered also by other processes.Moreover,in environments with a low sedimentation rate,the time between successive earthquakes is often too short to allow accumulation of beds that remain undisturbed.Furthermore,total liquefaction of a sandy bed may result in the absence of deformation features.(2) No truly diagnostic soft-sediment deformation structures exist to prove seismic activity.Moreover,the final configuration of a soft-sediment deformation structure is independent of the type of trigger.(3) Seismites occur frequently in areas where seismic activity is low today.(4) The lateral changes in the intensity of soft-sediment deformation structures in seismites as a factor presumed to depend on the distances to the epicenter,pose a complicated problem.The 2012 Emilia earthquakes,for instance,affected sandy fluvial channels but not the fine-grained floodplains.It must thus be deduced that specific soft-sediment deformation structures cannot be used without additional evidence to identify seismites.In particular,the magnitude of seismic shocks and the recurrence time of main events(the most important features that allow recognition of seismites) seem to be sedimentological in nature:facies changes in space and time seem theparameters that most strongly control the occurrence,morphology,lateral extent and the vertical repetition of seismites.展开更多
During the past 30 years (1987-2016), a great progress has been made in researches of soft-sediment deformation structures (SSDS), seismites and pataeoearthquakes in China. However, the research thought of this ac...During the past 30 years (1987-2016), a great progress has been made in researches of soft-sediment deformation structures (SSDS), seismites and pataeoearthquakes in China. However, the research thought of this academic fietd is not open enough. It is atmost with one viewpoint or one voice, i.e., atmost art the papers pubtished in journals of China considered the layers with SSDS as seismites. On the other hand, the authors are very glad to learn that the professors and students of China University of Petroleum (East China) have proposed different academic viewpoints on the origin of SSDS in Lingshan Istand, Qingdao, Shandong Province, China. It is a very active academic atmosphere. The authors' ideas are as follows: (1) The SSDS are sedimentary structures with multi-origin. The term "SSDS" is a good sedimentary and geological term and shoutd be utilized continuat[y. (2) The term "seismites" is a term which is definitety assigned to the layers with SSDS induced by earthquakes. It is one type of the tayers with SSDS. It is not equal to SSDS. (3) Some geotogists suggested obsoleting the term "seismites". These suggestions are rational However, since the term "seismites" has been utilized for a long time in China and worldwide, to obsolete this term should be discussed and agreement should be acquired from numerous geologists in China and worldwide. It may be suitable that let the geological practice decide whether to obsolete it or not. (4) Hopefully, further progress will be made in the researches of SSDS.展开更多
During a period of 82 years (1931-2013), 39 genetic terms were introduced for various deposits. Of the 39 terms, only ten are meaningful in understandin8 the true depositional origin (e.9., turbidites), the remain...During a period of 82 years (1931-2013), 39 genetic terms were introduced for various deposits. Of the 39 terms, only ten are meaningful in understandin8 the true depositional origin (e.9., turbidites), the remaining 29 are just jargons (e.g., seismites, tsunamites, etc.). The genetic term "seismites", introduced by Seitacher (1969) for recognizing pa[aeoearthquakes in the sedimentary record, is a misnomer. The term was introduced in haste, based on an examination of a single exposure of the Miocene Monterey Formation (10 m) in California, without a rigorous scientific analysis. The fundamental problem is that earthquake is a triggering mechanism, not a depositional process. Type of triggers cannot be recognized in the ancient sedimentary record because evidence for triggers is not preserved by nature. Soft-sediment deformation structures (SSDS), commonly used as the criteria for interpreting seismites, are a product of liquefaction. However, liquefaction can be induced by any one of 21 triggers, which include earthquakes, meteorite impacts, tsunamis, sediment loading, among others. Brecciated ciasts, typically associated with earthquake-induced deposits in the Dead Sea Basin, are also common depositional products of debris flows (i.e., synsedimentary product unrelated to earthquakes). Also, various types of SSDS, such as duplex-like structures and ctastic injections, can be explained by synsedimentary processes unrelated to earthquakes. Case studies of sandstone petroleum res- ervoirs worldwide, which include Gulf of Mexico, North Sea, Norwegian Sea, Nigeria, Equatorial Guinea, Gabon, and Bay of Bengal, reveal that there is compelling empirical evidence for sediment loading being the primary cause of SSDS. The Krishna-Godavari Basin, located on the eastern continental margin of India, is ideal for sediment failures by multiple triggering mechanisms where overpressure and liquefaction have ted to multi-origin SSDS. Because tsunamis and meteorite impacts are important phenomena in developing extensive deposits, lateral extent of SSDS cannot be used as a unique distinguishing attribute of earthquakes. For these reasons, the genetic term "seismites", which has no redeemable scientific value, is obsolete.展开更多
Geologically extremely rapid changes in attitude by glacial rebound of the Earth crust after retreat of the Scandinavian Ice Sheet at the end of the last Weichsetian glaciation influenced the patae- ogeography of nort...Geologically extremely rapid changes in attitude by glacial rebound of the Earth crust after retreat of the Scandinavian Ice Sheet at the end of the last Weichsetian glaciation influenced the patae- ogeography of northern Europe. The up(ift of the Earth crust apparently was not gradual, but shock-wise, as the uplift was accompanied by frequent, high-magnitude earthquakes. This can be deduced from strongly deformed layers which are interpreted as seismites. Such seismites have been described from several coun- tries around the Baltic Sea, including Sweden, Germany and Poland. Now similarly deformed layers that must also be interpreted as seismites, have been discovered also in Latvia, a Baltic country that was covered by an ice sheet during the last glaciation. The seismites were found at two sites: Near Vatmiera in the NE part and near Rakuti in the SE part of the country. The seismites were found in sections of about 7 m and 4.5 m high, respectively, that consist mainly of glaciofluvial and gtaciotacustrine sands and silts. At the Vatmiera site, 7 seismites were found, and at the Rakuti site these were even 12 seismites. The two sections have not been dated precisely up tilt now, but lithological correlations and geomorpho- logical characteristics suggest that the sediments at the Vatmiera site cannot be older than 14.5 ka. Because the accumulation of the section did not take more than about 1000 years, the average recurrence time of the high-magnitude (M≥4.5-5.0) earthquakes must have been maximally only 100-150 years, possibly only 6-7 years. The sediments at Rakuti must also have formed within approx. 1000 years (17-16 ka), implying a recurrence time of high-magnitude earthquakes of maximaUy once per 100-200 years.展开更多
At present, there are no criteria to distinguish soft-sediment deformation structures (SSDS) formed by earthquakes from SSDS formed by the other 20 triggering mechanisms (see a companion paper in Vol 5, No. 4 of th...At present, there are no criteria to distinguish soft-sediment deformation structures (SSDS) formed by earthquakes from SSDS formed by the other 20 triggering mechanisms (see a companion paper in Vol 5, No. 4 of this journal by Shanmugam, 2016). Even if one betieves that earthquakes are the true triggering mechanism of SSDS in a given case, the story is stiff incomptete. This is because earthquakes (seismic shocks) are induced by a variety of causes: 1) glbaltectonics and associated faults (i.e., midocean ridges, trenches, and transform fautts); 2) meteorite-impact events; 3) volcanic eruptions; 4) post-gtacialuplift; 5) tsunami impact; 6 cyclonic impact; 7) landslides (mass-transport deposits); 8) tidal activity; 9) sea-tevet rise; 10) erosion; and 11) fluid pumping. These different causes are important for devetoping SSDS. Breccias are an important group of SSDS. Although there are many types of breccias classified on the basis of their origin, five types are discussed here (fault, volcanic, meteorite impact, sedimentary-depositionaL, sedimentary-collapse). Atthough different breccia types may resemble each other, distinguishing one type (e.g., meteorite breccias) from the other types (e.g., fault, volcanic, and sedimentary breccias) has important imptications. 1) Meteorite breccias are characterized by shock features (e.g., planar deformation features in mineral grains, planar fractures, high-pressure polymorphs, shock melts, etc.), whereas sedimentary- depositional breccias (e.g., debrites) do not. 2) Meteorite breccias imply a confined sediment distribution in the vicinity of craters, whereas sedimentary-depositional breccias imply an unconfined sediment distribution, variable sediment transport, and variable sediment provenance. 3) Meteorite, volcanic, and fault breccias are invariabty subjected to diagenesis and hydrothermat mineratization with attered reservoir quality, whereas sedimentary-depositional breccias exhibit primary (unaltered) reservoir quality. And finalty, 4) sedimentary-collapse breccias are associated with economic mineralization (e.g., uranium ore), whereas sedimentary-depositional breccias are associated with petroleum reservoirs. Based on this important group of SSDS with breccias, the current practice of interpreting all SSDS as "seismites" is inappropriate. Ending this practice is necessary for enhancing conceptuat clarity and for advancing this research domain.展开更多
More than 80 layers of seismites were recognized from the Early Cretaceous Dasheng Group in the Mazhan and Tancheng graben basins in the Tanlu Fault Zone, eastern China. The responsible seismic events took place about...More than 80 layers of seismites were recognized from the Early Cretaceous Dasheng Group in the Mazhan and Tancheng graben basins in the Tanlu Fault Zone, eastern China. The responsible seismic events took place about 110–100 Ma in the Early Cretaceous. The fault zone was affected at the time by strong tectonics, due to tension-related stretching and scattered squeezing by strike-slip faults. These tectonic activities induced a series of strong earthquakes with Richter magnitudes(M) of 5–8.5. The earthquakes affected saturated or semi-consolidated flood and lake sediments, and produced intra-layer deformations by several processes, including liquefaction, thixotropy, drop, faulting, cracking, filling and folding, which resulted in the formation of various soft-sediment deformation structures, such as dikes and veins of liquefied sand, liquefied breccias, liquefied homogeneous layers, load structures, flame structures, ball-and-pillow structures, boudinage, diapirs, fissure infillings, a giant conglomerate wedge, and syn-sedimentary faults. The seismites are new evidence of tectonic and seismic activities in the Tanlu Fault Zone during the Early Cretaceous; the series of strong seismic events that can be deduced from them must be considered as a response to the destruction of the North China Craton.展开更多
A number of lead-zinc sulphide deposits have been discovered in recent years in dolo- mitic rocks of the Upper Sinian Dengying Formation in the Dadu River valley region, Sichuan Province, China. The lead-zinc minerali...A number of lead-zinc sulphide deposits have been discovered in recent years in dolo- mitic rocks of the Upper Sinian Dengying Formation in the Dadu River valley region, Sichuan Province, China. The lead-zinc mineralization is closely associated with a black siliceous exhalite that has been traced over 50 km of strike. This makes Dadu River valley the most extensive stratiform non-ferrous sulphide horizon having been discovered to date in China. In a previous study by the first author (LIN), these deposits were recognised as belonging to the broad spectrum of lead-zinc sedimentary exhala- tive (SEDEX) deposits. In this paper, seismites and seismogenetic structures occurring in close association with the Dadu River valley mineralized zone are described. The close spatial and temporal relationship between the seismites and mineralization provides strong evidence for the hypothesis that the lead-zinc SEDEX deposits formed in direct response to earthquake activities around the Sinian-Cambrian boundary. The earthquakes are postulated to be an effective dynamic mechanism for triggering the upward migration of deep circulating ore fluids along synsedimentary growth faults and their exhalation onto the sea-floor to form the extensive deposits of stratiform lead-zinc sulphide ore.展开更多
Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southw...Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southwestern Ordos Basin,China,are examined.There are 4 types and 9 subtypes of event deposits,i.e.earthquake,gravity flow,volcanic and anoxic deposits,in the Chang 9 Member in the study area.Based on the analysis of the characteristics and distribution of such events deposits,it is proposed that the event deposits are generally symbiotic or associated,with intrinsic genetic relations and distribution laws.Five kinds of sedimentary microfacies with relatively developed event deposits are identified,and the genetic model of event deposits is discussed.Seismites are mainly developed in the lake transgression stage when the basin expands episodically,and commonly affected by liquefaction flow,gravity action and brittle shear deformation.Gravity flow,mainly distributed in the high water level period,sandwiched in the fine-grained sediments of prodelta or semi-deep lake,or creates banded or lobate slump turbidite fan.It is relatively developed above the seismites strata.The volcanic event deposits are only seen in the lower part of the Chang 9 Member,showing abrupt contact at the top and bottom,which reflects the volcanic activity at the same time.Anoxic deposits are mostly formed in the late stage of lake transgression to the highstand stage.Very thick organic-rich shales are developed in the highstand stage of Chang 9 Member,and the event deposits in the depositional period of these shales are conducive to potential reservoirs.展开更多
Devonian in the North Qilian orogenic belt and Hexi Corridor developed terrestrial molasse of later stage of foreland basin caused by collision between the North China plate and Qaidam microplate. The foreland basin t...Devonian in the North Qilian orogenic belt and Hexi Corridor developed terrestrial molasse of later stage of foreland basin caused by collision between the North China plate and Qaidam microplate. The foreland basin triggered a intense earthquake, and formed seismites and earthquake-related soft-sediment deformation. The soft-sediment deformation structures of Devonian in the eastern North Qilian Mts. consist of seismo-cracks, sandstone dykes, syn-depositional faults, microfoids (micro-corrugated lamination), fluidized veins, load casts, flame structures, pillow structures and brecciation. The seismo-cracks, syn-depositional faults and microfolds are cracks, faults and folds formed directly by oscillation of earthquake. The seismic dykes formed by sediment instilling into seismic cracks. Fluidized veins were made by instilling into the seismo-fissures of the fluidized sands. The load casts, flame structures and pillow structures were formed by sinking and instilling caused from oscillation of earthquake along the face between sandy and muddy beds. The brecciation resulted from the oscillation of earthquake and cracking of sedimentary layers. The seismites and soft-sediment deformations in Devonian triggered the earthquake related to tectonic activities during the orogeny and uplift of North Qilian Mts.展开更多
Based on studies of sequence stratigraphy, event stratigraphy, biostratigraphy and lithostratigraphy, it is concluded that the Sailinhudong Group is a part of the Bayan Obo Group. Some trilobite fragments are first fo...Based on studies of sequence stratigraphy, event stratigraphy, biostratigraphy and lithostratigraphy, it is concluded that the Sailinhudong Group is a part of the Bayan Obo Group. Some trilobite fragments are first found in thin sections of the rock from the lower part of the Sailinhudong Group and some Ordovician acritarchs and chitinozoans are also found in this group. A formationa unit of carbonate seismites is first recognized in the upper part and a huge micrite mound is first identified at the top. Dolomite, the host rock of the super giant Bayan Obo Fe-Nb-REE deposits, is neither an igneous carbonatite nor a common bedded sedimentary carbonate, but a huge micrite mound. It has the same macroscopic characters as the micrite mounds at the top of the Sailinhudong Group, which suggests that they should be of the same horizon. According to the fossils, the Sailinhudong and Bayan Obo Groups should be of the Early Palaeozoic rather than the Middle Proterozoic. The new discovery and new idea will throw light on the explanation of the genesis of the supergiant Bayan Obo Fe-Nb-REE deposits.展开更多
Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist ...Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist of fluidized deformation, synsedimentary faults, seismo-folds and plastic deformation; the Mantou Formation is dominated by small-scale horst faults, intruded dikes, fluidized veins, and seismo-cracks. These structures are demonstrated to be earthquake-related by analysis of trigger mechanisms, and may indicate the activity of the Qinling tectonic belt during the early Cambrian. Furthermore, the assemblages of soft-sediment deformation structures altered with time: large-scale, intense deformation in the Zhushadong Formation alters to small-scale, weak deformation in the Mantou Formation. This striking feature may have been caused by changes in hypocentral depth from deep-focus to shallow-focus earthquakes, indicating that the Qinling tectonic belt developed from the subduction of the Shangdan Ocean to the extension of the Erlangping back-arc basin. This study suggests that soft-sediment deformation structures can be used to reveal the activity of a tectonic belt, and, more importantly, changes in deformation assemblages can track the evolution of a tectonic belt.展开更多
Unconsolidated siliciclastic sediments can undergo post-burial deformation, which leads to the formation of distinctive sedimentary structures, known as soft-sediment deformation structures(SSDS). The presence of a se...Unconsolidated siliciclastic sediments can undergo post-burial deformation, which leads to the formation of distinctive sedimentary structures, known as soft-sediment deformation structures(SSDS). The presence of a series of sand volcanoes confined to a particular lithostratigraphic horizon can represent a paleoseismic activity and, thereby, exemplifies the concept of “seismite”. The Kutch Basin has been a tectonically active region since the initiation of eastern Gondwana rifting followed by a tectonic inversion during the Cenozoic due to the collision of the Indian and Eurasian plates. A stratum-bound series of sand volcanoes belonging to the Khari Nadi Formation(KNF) is exposed along the banks of Khari River. They separate the shallow marine deposits below and non-marine deposits above with their characteristic marine and paleosol trace fossil suites, respectively. Although a seismogenic origin has been much debated for the SSDS,the ichnofabric analysis of the sand-volcano-bearing stratum unequivocally points toward such an origin under a shallow seafloor condition. In addition to the sedimentary regime change from an open shallow-marine setting to a continental depositional environment concomitant with basinal uplift, the behavior of the burrowing crustaceans testifies to a syn-depositional development of a fault network associated with the fluidization, sand volcanism, and the resilience of the trace-producers in surviving those processes until the sedimentary regime change in the overlying strata. Although the ichno-sedimentological evidence apparently differs from the previous works that proposed a continuous base-level rise from the beginning of deposition of the Khari Nadi Formation up to the middle part of the overlying Chhasra Formation, the paleoseismic activity,its ichnologic signature, and the depositional regime change refer to a higher-resolution(i.e., lower-order)sequence-stratigraphic change causing a short-duration regression within a longer-duration cycle of base-level rise.展开更多
The unequivocal identification of soft-sediment deformation structures(SSDS)is a significant attribute to constrain the effect of transient geological events in the spatio-temporal evolution of ancient sedimentary bas...The unequivocal identification of soft-sediment deformation structures(SSDS)is a significant attribute to constrain the effect of transient geological events in the spatio-temporal evolution of ancient sedimentary basins.This paper reports and discusses,for the first time,the occurrence of several cm-to dm-scale SSDS within sandstone successions of the Mesoproterozoic Kaimur Group(Vindhyan Supergroup),exposed at the Hanumandhara Hill of Chitrakoot-Satna border region,Madhya Pradesh State,India.The SSDS are confined to a deformed interval comprising seven individual sedimentary units of variable composition and texture,which are sandwiched between nearly horizontally undeformed sandstone beds.The SSDS consist of load structures(load casts,flame structures,pseudonodules and ball-and-pillow structures),contorted lamination,convolute lamination,boudins and pinch-and-swell structures,deformed cross-stratification,slump structures,clastic injections,fluid escape structures,and syn-sedimentary fractures/faults.The pre-sent study suggests that the formation of these SSDS is essentially related to a combination of processes(gravitational instability,liquefaction,fluidization,and fluid escape)predominantly induced by seismic shocks.In addition,the restricted occurrence of fractures/faults in these deformed layers emphasizes the passage of seismically-induced Rayleigh waves.Considering the observed types of SSDS,their lateral homo-geneity and geographic distribution along with the geodynamic framework of the Vindhyan Basin,the whole area can be tentatively attributed to having experienced moderate-to high-magnitude(M≥5)seismicity.The present study combined with earlier reports of seismically-induced SSDS,from other regionally disposed formations belonging to the Lower(e.g.,Kajrahat Limestone,Chopan Porcellanite,Koldaha Shale,Rohtas Limestone,and Glauconitic Sandstone of the Semri Group)and Upper(e.g.,Bhander Limestone of the Bhander Group)Vindhyan Supergroup,respectively,provides evidence for the constant regional-scale seismo-tectonic activity within the Paleo-Mesoproterozoic Vindhyan Basin.Importantly,this observation further suggests that the intracratonic basins can be active tectonically contrary to the earlier propositions.展开更多
Carbonate liquefied veins in limestone and liquefied mud veins in mudstone are the result by earthquake, which is liquefied in sediments and a strong earthquake event remains clearly records in strata. 24 strata units...Carbonate liquefied veins in limestone and liquefied mud veins in mudstone are the result by earthquake, which is liquefied in sediments and a strong earthquake event remains clearly records in strata. 24 strata units with earthquake events (molar tooth), which are subdivided into 11 seismic periods, have been distinguished from Mid-Proterozoic to Early Paleozoic strata in the Sino-Korean platform. The distributions of them represent paleo-seismic tectonic zones in different periods, which is tallied with convergent continental block before Proterozoic supercontinental Rodinia and the evidence of the breakup or splitting developed in the inner Sino-Korean Platform in 700 Ma.展开更多
Soft-sediment structures are key to defining seismites. Two soft-sediment deformation horizons, bounded by undeformed carbonate strata, have been found in the Wumishan Formation in the Jumahe region, 175 km southwest ...Soft-sediment structures are key to defining seismites. Two soft-sediment deformation horizons, bounded by undeformed carbonate strata, have been found in the Wumishan Formation in the Jumahe region, 175 km southwest of Beijing. One is in the lowest part of Wumishan Formation; and the other is in the uppermost part of Litho-member I. The soft-sediment structures in these two horizons fall into three categories: mould-and-sag structures, hydraulic shatterings and liquefaction dikes. The mould-and-sag structures are divided into two types: one developed in tidal-flat sediments, accompa-nied by many liquefaction-related structures and characterized by autochthonous post-earthquake sediments in sags, and the other type developed in deep-water environments, is not associated with liquefaction structures, and is overlain immediately by seismogenic tsunamites. The hydraulic shat-terings are composed of pockets of fluidization conglomerate, sand intrusions, and syndepositional faults. The liquefaction dikes fall into two categories: hydraulic-fracturing dikes and lateral-spreading dikes. The former are steep, planar, and pinch out upwards. The latter are snake-like and characterized by no diapir-related drag structures in surrounding rocks. Examination of the attitudes and strati-graphic positions of these structures suggests that these soft-sediment structures are seismogenic, and consequently, are seismites. Most seismites in the Wumishan Formation are developed near the former western, margin fault of Yanliao rift. This occurrence suggests that they could be related to movements on this fault. Other geological implications are discussed.展开更多
基金supported by the Science Research from the work project of China Geological Survey (No.12120115002001, 12120115026901)the Northwest Subcompany of SINOPEC (No: KY2013-S-024)+2 种基金a Special Research Grant from Ministry of Land and Resources of the People’s Republic of China (No.201011034)the Innovation Group of National Natural Science Foundation of China (No.40921001)the open project fund of State Key Laboratory of Continental Tectonics and Dynamics (No.Z1301-A3)
文摘The distribution and formation mechanisms of typical identified seismites are analyzed based on various factors from plate tectonic positions, types of sedimentary basins and properties of seismogenic faults to focal mechanisms.Especially, structural styles, reserved positions, activity times, formation mechanisms and dynamics of soft-sediment deformation structures triggered by seismic activity are systematically analyzed.According to the genetic types of seismites, we propose 5 categories, including liquefied deformation, thixotropic deformation, hydroplastic deformation, superimposed gravity driving deformation and brittle deformation.Further, based on the main genetic types, composition of sediments and deformation styles, we draw up 35 secondary classifications.To determine paleo-seismic sequences in different times, activities of seismogenic faults, high-resolution tectonic events in one main tectonic movement and paleo-tectonic settings, and to understand the inducing mechanisms of paleo-earthquakes and ecologic environment evolution, researching on seismites are of great significance.Combing multiple approaches to identify the paleoearthquake records, simulating experiments on various soft-sediment deformation structures triggered by different magnitudes of shocking, dating precisely on paleo-seismic events, impacting on paleogeography and biological environment and on energy and resources domain are the frontiers of paleoseismic research.
基金supported by the National Natural Science Foundation of China(No.49972078).
文摘The Caledonian orogenic belt of the North Qilian Mountains is an intensely active structure belt. In the process of the Late Caledonian syn-orogeny, the North Qilian-Hexi Corridor area was situated on the tectonic background of a syn-orogenic basin. In response to the orogenic process of the North Qilian Mountains, typical earthquake event deposits—seismites of the Silurian were widely distributed around Hanxia of Yumen City, the Liyuan River of Sunan County and Biandukou of Minle County. In the Hanxia area, where seismites are typically developed, clastic deposits of tidal-flat facies are the background deposits of the Hanxia Formation. The earthquake event deposits are characterized by sandy mudstone veins, synsedimentary microfractures, micro-corrugated laminations and earthquake breccias, which in turn constitute complex seismites, featuring seismic corrugation, shattering and liquefied sandy mudstone veins, auto-clastic breccias and intraclastic parabreccias. The seismites and tidal flat deposits formed typical sequences of earthquake event deposits.
文摘Soft-sediment deformation structures induced by seismic liquefaction and/or fluidization receive much attention in sedimentological,structural and palaeoseismic studies.The direct record of larger earthquakes is restricted to instrumental and historical data; the recognition of prehistoric earthquakes requires criteria to recognize seismites in the geological record.The areal distribution of seismites can sometimes be related to active faults since distances to the epicenter(for a given magnitude) tend to be related to the liquefaction effects of seismic shocks.The use of soft-sediment deformation structures for palaeoseismic studies has limitations,however.Hardly anything is known,for instance,about the effects that modern seismic events have on the sediments in most environments.Moreover,criteria for the recognition of seismites are still under discussion.The following characteristics seem,particularly in combination,the most reliable:(1) Soft-sediment deformation structures should occur in laterally continuous,preferably recurring horizons,separated by undeformed beds;(2) These deformation structures should be comparable with structures known to have been triggered by modern seismic activity;(3) The sedimentary basin should have experienced tectonic activity at the time when the deformations were formed; and(4) The intensity or abundance of the soft-sediment deformation structures in a presumed seismite should change laterally,depending on the distance to the epicenter.It turns out that all of these four criteria have important exceptions.(1) Soft-sediment deformation structures occurring over large lateral distances in a specific layer can be triggered also by other processes.Moreover,in environments with a low sedimentation rate,the time between successive earthquakes is often too short to allow accumulation of beds that remain undisturbed.Furthermore,total liquefaction of a sandy bed may result in the absence of deformation features.(2) No truly diagnostic soft-sediment deformation structures exist to prove seismic activity.Moreover,the final configuration of a soft-sediment deformation structure is independent of the type of trigger.(3) Seismites occur frequently in areas where seismic activity is low today.(4) The lateral changes in the intensity of soft-sediment deformation structures in seismites as a factor presumed to depend on the distances to the epicenter,pose a complicated problem.The 2012 Emilia earthquakes,for instance,affected sandy fluvial channels but not the fine-grained floodplains.It must thus be deduced that specific soft-sediment deformation structures cannot be used without additional evidence to identify seismites.In particular,the magnitude of seismic shocks and the recurrence time of main events(the most important features that allow recognition of seismites) seem to be sedimentological in nature:facies changes in space and time seem theparameters that most strongly control the occurrence,morphology,lateral extent and the vertical repetition of seismites.
文摘During the past 30 years (1987-2016), a great progress has been made in researches of soft-sediment deformation structures (SSDS), seismites and pataeoearthquakes in China. However, the research thought of this academic fietd is not open enough. It is atmost with one viewpoint or one voice, i.e., atmost art the papers pubtished in journals of China considered the layers with SSDS as seismites. On the other hand, the authors are very glad to learn that the professors and students of China University of Petroleum (East China) have proposed different academic viewpoints on the origin of SSDS in Lingshan Istand, Qingdao, Shandong Province, China. It is a very active academic atmosphere. The authors' ideas are as follows: (1) The SSDS are sedimentary structures with multi-origin. The term "SSDS" is a good sedimentary and geological term and shoutd be utilized continuat[y. (2) The term "seismites" is a term which is definitety assigned to the layers with SSDS induced by earthquakes. It is one type of the tayers with SSDS. It is not equal to SSDS. (3) Some geotogists suggested obsoleting the term "seismites". These suggestions are rational However, since the term "seismites" has been utilized for a long time in China and worldwide, to obsolete this term should be discussed and agreement should be acquired from numerous geologists in China and worldwide. It may be suitable that let the geological practice decide whether to obsolete it or not. (4) Hopefully, further progress will be made in the researches of SSDS.
文摘During a period of 82 years (1931-2013), 39 genetic terms were introduced for various deposits. Of the 39 terms, only ten are meaningful in understandin8 the true depositional origin (e.9., turbidites), the remaining 29 are just jargons (e.g., seismites, tsunamites, etc.). The genetic term "seismites", introduced by Seitacher (1969) for recognizing pa[aeoearthquakes in the sedimentary record, is a misnomer. The term was introduced in haste, based on an examination of a single exposure of the Miocene Monterey Formation (10 m) in California, without a rigorous scientific analysis. The fundamental problem is that earthquake is a triggering mechanism, not a depositional process. Type of triggers cannot be recognized in the ancient sedimentary record because evidence for triggers is not preserved by nature. Soft-sediment deformation structures (SSDS), commonly used as the criteria for interpreting seismites, are a product of liquefaction. However, liquefaction can be induced by any one of 21 triggers, which include earthquakes, meteorite impacts, tsunamis, sediment loading, among others. Brecciated ciasts, typically associated with earthquake-induced deposits in the Dead Sea Basin, are also common depositional products of debris flows (i.e., synsedimentary product unrelated to earthquakes). Also, various types of SSDS, such as duplex-like structures and ctastic injections, can be explained by synsedimentary processes unrelated to earthquakes. Case studies of sandstone petroleum res- ervoirs worldwide, which include Gulf of Mexico, North Sea, Norwegian Sea, Nigeria, Equatorial Guinea, Gabon, and Bay of Bengal, reveal that there is compelling empirical evidence for sediment loading being the primary cause of SSDS. The Krishna-Godavari Basin, located on the eastern continental margin of India, is ideal for sediment failures by multiple triggering mechanisms where overpressure and liquefaction have ted to multi-origin SSDS. Because tsunamis and meteorite impacts are important phenomena in developing extensive deposits, lateral extent of SSDS cannot be used as a unique distinguishing attribute of earthquakes. For these reasons, the genetic term "seismites", which has no redeemable scientific value, is obsolete.
基金financially supported by grants from the National Science Centre Poland(based on decisions No.DEC-2013/09/B/ST10/00031 and No 2015/19/B/ST10/00661)
文摘Geologically extremely rapid changes in attitude by glacial rebound of the Earth crust after retreat of the Scandinavian Ice Sheet at the end of the last Weichsetian glaciation influenced the patae- ogeography of northern Europe. The up(ift of the Earth crust apparently was not gradual, but shock-wise, as the uplift was accompanied by frequent, high-magnitude earthquakes. This can be deduced from strongly deformed layers which are interpreted as seismites. Such seismites have been described from several coun- tries around the Baltic Sea, including Sweden, Germany and Poland. Now similarly deformed layers that must also be interpreted as seismites, have been discovered also in Latvia, a Baltic country that was covered by an ice sheet during the last glaciation. The seismites were found at two sites: Near Vatmiera in the NE part and near Rakuti in the SE part of the country. The seismites were found in sections of about 7 m and 4.5 m high, respectively, that consist mainly of glaciofluvial and gtaciotacustrine sands and silts. At the Vatmiera site, 7 seismites were found, and at the Rakuti site these were even 12 seismites. The two sections have not been dated precisely up tilt now, but lithological correlations and geomorpho- logical characteristics suggest that the sediments at the Vatmiera site cannot be older than 14.5 ka. Because the accumulation of the section did not take more than about 1000 years, the average recurrence time of the high-magnitude (M≥4.5-5.0) earthquakes must have been maximally only 100-150 years, possibly only 6-7 years. The sediments at Rakuti must also have formed within approx. 1000 years (17-16 ka), implying a recurrence time of high-magnitude earthquakes of maximaUy once per 100-200 years.
文摘At present, there are no criteria to distinguish soft-sediment deformation structures (SSDS) formed by earthquakes from SSDS formed by the other 20 triggering mechanisms (see a companion paper in Vol 5, No. 4 of this journal by Shanmugam, 2016). Even if one betieves that earthquakes are the true triggering mechanism of SSDS in a given case, the story is stiff incomptete. This is because earthquakes (seismic shocks) are induced by a variety of causes: 1) glbaltectonics and associated faults (i.e., midocean ridges, trenches, and transform fautts); 2) meteorite-impact events; 3) volcanic eruptions; 4) post-gtacialuplift; 5) tsunami impact; 6 cyclonic impact; 7) landslides (mass-transport deposits); 8) tidal activity; 9) sea-tevet rise; 10) erosion; and 11) fluid pumping. These different causes are important for devetoping SSDS. Breccias are an important group of SSDS. Although there are many types of breccias classified on the basis of their origin, five types are discussed here (fault, volcanic, meteorite impact, sedimentary-depositionaL, sedimentary-collapse). Atthough different breccia types may resemble each other, distinguishing one type (e.g., meteorite breccias) from the other types (e.g., fault, volcanic, and sedimentary breccias) has important imptications. 1) Meteorite breccias are characterized by shock features (e.g., planar deformation features in mineral grains, planar fractures, high-pressure polymorphs, shock melts, etc.), whereas sedimentary- depositional breccias (e.g., debrites) do not. 2) Meteorite breccias imply a confined sediment distribution in the vicinity of craters, whereas sedimentary-depositional breccias imply an unconfined sediment distribution, variable sediment transport, and variable sediment provenance. 3) Meteorite, volcanic, and fault breccias are invariabty subjected to diagenesis and hydrothermat mineratization with attered reservoir quality, whereas sedimentary-depositional breccias exhibit primary (unaltered) reservoir quality. And finalty, 4) sedimentary-collapse breccias are associated with economic mineralization (e.g., uranium ore), whereas sedimentary-depositional breccias are associated with petroleum reservoirs. Based on this important group of SSDS with breccias, the current practice of interpreting all SSDS as "seismites" is inappropriate. Ending this practice is necessary for enhancing conceptuat clarity and for advancing this research domain.
基金the National Natural Science Foundation of China (Grant No. 41272066)the National Science and Technology Support Program (Grant No. 2012BAK19B04-01)the Yangtze River Scholars and Innovation Team Development Plan (Grant No. IRT13075)
文摘More than 80 layers of seismites were recognized from the Early Cretaceous Dasheng Group in the Mazhan and Tancheng graben basins in the Tanlu Fault Zone, eastern China. The responsible seismic events took place about 110–100 Ma in the Early Cretaceous. The fault zone was affected at the time by strong tectonics, due to tension-related stretching and scattered squeezing by strike-slip faults. These tectonic activities induced a series of strong earthquakes with Richter magnitudes(M) of 5–8.5. The earthquakes affected saturated or semi-consolidated flood and lake sediments, and produced intra-layer deformations by several processes, including liquefaction, thixotropy, drop, faulting, cracking, filling and folding, which resulted in the formation of various soft-sediment deformation structures, such as dikes and veins of liquefied sand, liquefied breccias, liquefied homogeneous layers, load structures, flame structures, ball-and-pillow structures, boudinage, diapirs, fissure infillings, a giant conglomerate wedge, and syn-sedimentary faults. The seismites are new evidence of tectonic and seismic activities in the Tanlu Fault Zone during the Early Cretaceous; the series of strong seismic events that can be deduced from them must be considered as a response to the destruction of the North China Craton.
文摘A number of lead-zinc sulphide deposits have been discovered in recent years in dolo- mitic rocks of the Upper Sinian Dengying Formation in the Dadu River valley region, Sichuan Province, China. The lead-zinc mineralization is closely associated with a black siliceous exhalite that has been traced over 50 km of strike. This makes Dadu River valley the most extensive stratiform non-ferrous sulphide horizon having been discovered to date in China. In a previous study by the first author (LIN), these deposits were recognised as belonging to the broad spectrum of lead-zinc sedimentary exhala- tive (SEDEX) deposits. In this paper, seismites and seismogenetic structures occurring in close association with the Dadu River valley mineralized zone are described. The close spatial and temporal relationship between the seismites and mineralization provides strong evidence for the hypothesis that the lead-zinc SEDEX deposits formed in direct response to earthquake activities around the Sinian-Cambrian boundary. The earthquakes are postulated to be an effective dynamic mechanism for triggering the upward migration of deep circulating ore fluids along synsedimentary growth faults and their exhalation onto the sea-floor to form the extensive deposits of stratiform lead-zinc sulphide ore.
基金Supported by the PetroChina Scientific Research and Technological Development Project(2021DJ0402).
文摘Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southwestern Ordos Basin,China,are examined.There are 4 types and 9 subtypes of event deposits,i.e.earthquake,gravity flow,volcanic and anoxic deposits,in the Chang 9 Member in the study area.Based on the analysis of the characteristics and distribution of such events deposits,it is proposed that the event deposits are generally symbiotic or associated,with intrinsic genetic relations and distribution laws.Five kinds of sedimentary microfacies with relatively developed event deposits are identified,and the genetic model of event deposits is discussed.Seismites are mainly developed in the lake transgression stage when the basin expands episodically,and commonly affected by liquefaction flow,gravity action and brittle shear deformation.Gravity flow,mainly distributed in the high water level period,sandwiched in the fine-grained sediments of prodelta or semi-deep lake,or creates banded or lobate slump turbidite fan.It is relatively developed above the seismites strata.The volcanic event deposits are only seen in the lower part of the Chang 9 Member,showing abrupt contact at the top and bottom,which reflects the volcanic activity at the same time.Anoxic deposits are mostly formed in the late stage of lake transgression to the highstand stage.Very thick organic-rich shales are developed in the highstand stage of Chang 9 Member,and the event deposits in the depositional period of these shales are conducive to potential reservoirs.
基金supported by the National Natural Science Foundation of China(NO,40672080,40621002)the Program for Innovative Research Team in University of the Ministry of Education of China(IRT00546)"111 Project"(Grant No.B08030)
文摘Devonian in the North Qilian orogenic belt and Hexi Corridor developed terrestrial molasse of later stage of foreland basin caused by collision between the North China plate and Qaidam microplate. The foreland basin triggered a intense earthquake, and formed seismites and earthquake-related soft-sediment deformation. The soft-sediment deformation structures of Devonian in the eastern North Qilian Mts. consist of seismo-cracks, sandstone dykes, syn-depositional faults, microfoids (micro-corrugated lamination), fluidized veins, load casts, flame structures, pillow structures and brecciation. The seismo-cracks, syn-depositional faults and microfolds are cracks, faults and folds formed directly by oscillation of earthquake. The seismic dykes formed by sediment instilling into seismic cracks. Fluidized veins were made by instilling into the seismo-fissures of the fluidized sands. The load casts, flame structures and pillow structures were formed by sinking and instilling caused from oscillation of earthquake along the face between sandy and muddy beds. The brecciation resulted from the oscillation of earthquake and cracking of sedimentary layers. The seismites and soft-sediment deformations in Devonian triggered the earthquake related to tectonic activities during the orogeny and uplift of North Qilian Mts.
基金This research was jointly supported by the National Natural Science Foundation of China (Grant No. 4962008)the "Sequence Sea Level Change"-a state key project of the State Science and Technology Commission
文摘Based on studies of sequence stratigraphy, event stratigraphy, biostratigraphy and lithostratigraphy, it is concluded that the Sailinhudong Group is a part of the Bayan Obo Group. Some trilobite fragments are first found in thin sections of the rock from the lower part of the Sailinhudong Group and some Ordovician acritarchs and chitinozoans are also found in this group. A formationa unit of carbonate seismites is first recognized in the upper part and a huge micrite mound is first identified at the top. Dolomite, the host rock of the super giant Bayan Obo Fe-Nb-REE deposits, is neither an igneous carbonatite nor a common bedded sedimentary carbonate, but a huge micrite mound. It has the same macroscopic characters as the micrite mounds at the top of the Sailinhudong Group, which suggests that they should be of the same horizon. According to the fossils, the Sailinhudong and Bayan Obo Groups should be of the Early Palaeozoic rather than the Middle Proterozoic. The new discovery and new idea will throw light on the explanation of the genesis of the supergiant Bayan Obo Fe-Nb-REE deposits.
基金granted by the doctor foundation of Henan Polytechnic University(NO:B2013-076)the National Nature Science Foundation of China(NO:4147208341440016)
文摘Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist of fluidized deformation, synsedimentary faults, seismo-folds and plastic deformation; the Mantou Formation is dominated by small-scale horst faults, intruded dikes, fluidized veins, and seismo-cracks. These structures are demonstrated to be earthquake-related by analysis of trigger mechanisms, and may indicate the activity of the Qinling tectonic belt during the early Cambrian. Furthermore, the assemblages of soft-sediment deformation structures altered with time: large-scale, intense deformation in the Zhushadong Formation alters to small-scale, weak deformation in the Mantou Formation. This striking feature may have been caused by changes in hypocentral depth from deep-focus to shallow-focus earthquakes, indicating that the Qinling tectonic belt developed from the subduction of the Shangdan Ocean to the extension of the Erlangping back-arc basin. This study suggests that soft-sediment deformation structures can be used to reveal the activity of a tectonic belt, and, more importantly, changes in deformation assemblages can track the evolution of a tectonic belt.
基金Science and Engineering Research Board (SERB), Government of India (Grant # CRG/2018/000259 to SDG)Industrial Research and Consultancy Centre (IRCC), IIT Bombay (Seed Grant # RD/0517-IRCCSH0-035 to SDG)Council of Scientific and Industrial Research (CSIR) (doctoral scholarship for AS),University Grants Commission (doctoral scholarship for KC),IIT Bombay and Ministry of Education of India (doctoral scholarship for MD)。
文摘Unconsolidated siliciclastic sediments can undergo post-burial deformation, which leads to the formation of distinctive sedimentary structures, known as soft-sediment deformation structures(SSDS). The presence of a series of sand volcanoes confined to a particular lithostratigraphic horizon can represent a paleoseismic activity and, thereby, exemplifies the concept of “seismite”. The Kutch Basin has been a tectonically active region since the initiation of eastern Gondwana rifting followed by a tectonic inversion during the Cenozoic due to the collision of the Indian and Eurasian plates. A stratum-bound series of sand volcanoes belonging to the Khari Nadi Formation(KNF) is exposed along the banks of Khari River. They separate the shallow marine deposits below and non-marine deposits above with their characteristic marine and paleosol trace fossil suites, respectively. Although a seismogenic origin has been much debated for the SSDS,the ichnofabric analysis of the sand-volcano-bearing stratum unequivocally points toward such an origin under a shallow seafloor condition. In addition to the sedimentary regime change from an open shallow-marine setting to a continental depositional environment concomitant with basinal uplift, the behavior of the burrowing crustaceans testifies to a syn-depositional development of a fault network associated with the fluidization, sand volcanism, and the resilience of the trace-producers in surviving those processes until the sedimentary regime change in the overlying strata. Although the ichno-sedimentological evidence apparently differs from the previous works that proposed a continuous base-level rise from the beginning of deposition of the Khari Nadi Formation up to the middle part of the overlying Chhasra Formation, the paleoseismic activity,its ichnologic signature, and the depositional regime change refer to a higher-resolution(i.e., lower-order)sequence-stratigraphic change causing a short-duration regression within a longer-duration cycle of base-level rise.
基金the Council of Scientific and Industrial Research, New Delhi, Government of India, for awarding him Shyama Prasad Mukherjee Fellowship [SPM-09/001(0328)/2020-EMRI]the Department of Science and Technology, Government of India, for the INSPIRE Fellowship [IF170168]
文摘The unequivocal identification of soft-sediment deformation structures(SSDS)is a significant attribute to constrain the effect of transient geological events in the spatio-temporal evolution of ancient sedimentary basins.This paper reports and discusses,for the first time,the occurrence of several cm-to dm-scale SSDS within sandstone successions of the Mesoproterozoic Kaimur Group(Vindhyan Supergroup),exposed at the Hanumandhara Hill of Chitrakoot-Satna border region,Madhya Pradesh State,India.The SSDS are confined to a deformed interval comprising seven individual sedimentary units of variable composition and texture,which are sandwiched between nearly horizontally undeformed sandstone beds.The SSDS consist of load structures(load casts,flame structures,pseudonodules and ball-and-pillow structures),contorted lamination,convolute lamination,boudins and pinch-and-swell structures,deformed cross-stratification,slump structures,clastic injections,fluid escape structures,and syn-sedimentary fractures/faults.The pre-sent study suggests that the formation of these SSDS is essentially related to a combination of processes(gravitational instability,liquefaction,fluidization,and fluid escape)predominantly induced by seismic shocks.In addition,the restricted occurrence of fractures/faults in these deformed layers emphasizes the passage of seismically-induced Rayleigh waves.Considering the observed types of SSDS,their lateral homo-geneity and geographic distribution along with the geodynamic framework of the Vindhyan Basin,the whole area can be tentatively attributed to having experienced moderate-to high-magnitude(M≥5)seismicity.The present study combined with earlier reports of seismically-induced SSDS,from other regionally disposed formations belonging to the Lower(e.g.,Kajrahat Limestone,Chopan Porcellanite,Koldaha Shale,Rohtas Limestone,and Glauconitic Sandstone of the Semri Group)and Upper(e.g.,Bhander Limestone of the Bhander Group)Vindhyan Supergroup,respectively,provides evidence for the constant regional-scale seismo-tectonic activity within the Paleo-Mesoproterozoic Vindhyan Basin.Importantly,this observation further suggests that the intracratonic basins can be active tectonically contrary to the earlier propositions.
文摘Carbonate liquefied veins in limestone and liquefied mud veins in mudstone are the result by earthquake, which is liquefied in sediments and a strong earthquake event remains clearly records in strata. 24 strata units with earthquake events (molar tooth), which are subdivided into 11 seismic periods, have been distinguished from Mid-Proterozoic to Early Paleozoic strata in the Sino-Korean platform. The distributions of them represent paleo-seismic tectonic zones in different periods, which is tallied with convergent continental block before Proterozoic supercontinental Rodinia and the evidence of the breakup or splitting developed in the inner Sino-Korean Platform in 700 Ma.
基金China Geological Survey (Grant No.200313000055)a special fund from the China University of Geosciences (Beijing)
文摘Soft-sediment structures are key to defining seismites. Two soft-sediment deformation horizons, bounded by undeformed carbonate strata, have been found in the Wumishan Formation in the Jumahe region, 175 km southwest of Beijing. One is in the lowest part of Wumishan Formation; and the other is in the uppermost part of Litho-member I. The soft-sediment structures in these two horizons fall into three categories: mould-and-sag structures, hydraulic shatterings and liquefaction dikes. The mould-and-sag structures are divided into two types: one developed in tidal-flat sediments, accompa-nied by many liquefaction-related structures and characterized by autochthonous post-earthquake sediments in sags, and the other type developed in deep-water environments, is not associated with liquefaction structures, and is overlain immediately by seismogenic tsunamites. The hydraulic shat-terings are composed of pockets of fluidization conglomerate, sand intrusions, and syndepositional faults. The liquefaction dikes fall into two categories: hydraulic-fracturing dikes and lateral-spreading dikes. The former are steep, planar, and pinch out upwards. The latter are snake-like and characterized by no diapir-related drag structures in surrounding rocks. Examination of the attitudes and strati-graphic positions of these structures suggests that these soft-sediment structures are seismogenic, and consequently, are seismites. Most seismites in the Wumishan Formation are developed near the former western, margin fault of Yanliao rift. This occurrence suggests that they could be related to movements on this fault. Other geological implications are discussed.