lin-12-like抑制/增强子(suppressor/enhancer of lin-12-like,SEL1L)分子可以参与调控多种肿瘤进展;同时,其作为内质网相关降解途径(endoplasmic reticulum-associated degradation,ERAD)的重要组成,还参与调控蛋白质合成,与内质网应激...lin-12-like抑制/增强子(suppressor/enhancer of lin-12-like,SEL1L)分子可以参与调控多种肿瘤进展;同时,其作为内质网相关降解途径(endoplasmic reticulum-associated degradation,ERAD)的重要组成,还参与调控蛋白质合成,与内质网应激(ER stress)及其引起的未折叠蛋白反应(unfolded protein response,UPR)密切相关。在肿瘤微环境中,ERAD不仅参与调控肿瘤细胞的生物学行为,对肿瘤进展发挥重要作用;其还参与对免疫细胞增殖分化、功能以及代谢途径的调节,影响免疫细胞发挥抗肿瘤免疫作用。因此,深入了解探索肿瘤微环境中SEL1L分子及ERAD的潜在机制,可为肿瘤发生、发展及免疫治疗提供新理论和新靶点。本文就SEL1L分子及其参与的内质网相关降解途径在肿瘤进展与免疫调节中的作用进行简要综述。展开更多
Background Tanis was reported as a putative receptor for serum amyloid A (SAA) involving glucose regulated protein in insulin regulated resistance. It was found to be dysregulated in diabetic rats (Psammomys obesus...Background Tanis was reported as a putative receptor for serum amyloid A (SAA) involving glucose regulated protein in insulin regulated resistance. It was found to be dysregulated in diabetic rats (Psammomys obesus, Israeli sand rat) and its homologue for humans is SelS/AD-015. The present study analyzed mRNA expression of SelS in omental adipose tissue biopsies from patients with type 2 diabetes mellitus (T2DM), and age- and weight-matched nondiabetic patients, the relationship of SelS mRNA with Homa-IR and serum SAA level. Methods Human omental adipose tissues from ten cases of type 2 diabetic patients and twelve cases of nondiabetic individuals were analyzed for the expression level of SelS mRNA by semiquantitative polymerase chain reaction (PCR), Homa-IR estimated by standard formula and SAA level by enzyme-linked immunosorbent assay (ELISA). Results SelS mRNA expression, Homa-IR and serum SAA were higher in T2DM sufferers than in nondiabetic control group. SelS mRNA level was positively correlated with Homa-IR and SAA level in each group. Conclusions SelS protein may be involved in insulin resistance in Chinese with T2DM by acting as the SAA receptor, thus playing an important role in the development of T2DM and atherosclerosis.展开更多
文摘lin-12-like抑制/增强子(suppressor/enhancer of lin-12-like,SEL1L)分子可以参与调控多种肿瘤进展;同时,其作为内质网相关降解途径(endoplasmic reticulum-associated degradation,ERAD)的重要组成,还参与调控蛋白质合成,与内质网应激(ER stress)及其引起的未折叠蛋白反应(unfolded protein response,UPR)密切相关。在肿瘤微环境中,ERAD不仅参与调控肿瘤细胞的生物学行为,对肿瘤进展发挥重要作用;其还参与对免疫细胞增殖分化、功能以及代谢途径的调节,影响免疫细胞发挥抗肿瘤免疫作用。因此,深入了解探索肿瘤微环境中SEL1L分子及ERAD的潜在机制,可为肿瘤发生、发展及免疫治疗提供新理论和新靶点。本文就SEL1L分子及其参与的内质网相关降解途径在肿瘤进展与免疫调节中的作用进行简要综述。
基金This study was supported by grants from National Natural Science Foundation of China (No. 30670649, No. 30470682), National Key Research Project for the Tenth Five Year Plan (No. 2001BA702B01), and Key Research Project of Liaoning Province Bureau of Science and Technology (No. 2002225003-6).
文摘Background Tanis was reported as a putative receptor for serum amyloid A (SAA) involving glucose regulated protein in insulin regulated resistance. It was found to be dysregulated in diabetic rats (Psammomys obesus, Israeli sand rat) and its homologue for humans is SelS/AD-015. The present study analyzed mRNA expression of SelS in omental adipose tissue biopsies from patients with type 2 diabetes mellitus (T2DM), and age- and weight-matched nondiabetic patients, the relationship of SelS mRNA with Homa-IR and serum SAA level. Methods Human omental adipose tissues from ten cases of type 2 diabetic patients and twelve cases of nondiabetic individuals were analyzed for the expression level of SelS mRNA by semiquantitative polymerase chain reaction (PCR), Homa-IR estimated by standard formula and SAA level by enzyme-linked immunosorbent assay (ELISA). Results SelS mRNA expression, Homa-IR and serum SAA were higher in T2DM sufferers than in nondiabetic control group. SelS mRNA level was positively correlated with Homa-IR and SAA level in each group. Conclusions SelS protein may be involved in insulin resistance in Chinese with T2DM by acting as the SAA receptor, thus playing an important role in the development of T2DM and atherosclerosis.