In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- ti...In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.展开更多
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the ...A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.展开更多
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate ...Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate(Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.展开更多
This paper presents a thorough study of particle impact breakage in selection function with a unified breakage criterion.The impact mode and breakage pattern for particulate materials are classified based on a signifi...This paper presents a thorough study of particle impact breakage in selection function with a unified breakage criterion.The impact mode and breakage pattern for particulate materials are classified based on a significant review of well-established impact testers.It was found that the lack of a unified breakage criterion to determine the breakage probability disables a direct comparison of particle breakage propensity from different impact loading testers.The literature breakage models to describe the breakage probability are reviewed where the advantage and drawback of these models are scrutinized.The sourced literature breakage models are compared with the zeolite breakage datasets in a unified breakage criterion to evaluate the model performance.A novel computational modelling workflow for a milling process is proposed to provide a guidance in implementing the digital twin in milling process prediction.The breakage probability models,i.e.the selection functions are comprehensively assessed in population balance model to examine the model serviceability.The model simplicity and fidelity in the model assessment are specifically discussed and the value of digital twin in substantially reducing the experimental trials is highlighted.展开更多
Proteostasis is critical for neuronal maintenance and survival, and its imbalance leads to neurodegeneration with the hallmark of protein misfolding and aggregation. Macroautophagy becomes a major route for the cleara...Proteostasis is critical for neuronal maintenance and survival, and its imbalance leads to neurodegeneration with the hallmark of protein misfolding and aggregation. Macroautophagy becomes a major route for the clearance of protein aggregates that are normally poor substrates for the proteasome, the other protein quality-control machinery. As a flux process, macroautophagy (hereafter referred to as autophagy) involves the formation of the autophagosome, a double-membrane vesicle for engulfing unwanted cellular components such as protein aggregates, and the fusion of autophagosomes with lysosomes that contain many potent proteases for final degradation.展开更多
This article analyses different characteristics of scale,site selection and function of the current economic andtehnological development zones in our country.It further proposes that it is inappropriate for the econom...This article analyses different characteristics of scale,site selection and function of the current economic andtehnological development zones in our country.It further proposes that it is inappropriate for the economic andtechnological development zones to follow the“pattern of the special zones”,but a new pattern of“small scale,unitaryfunction and closeness to old city”should be adopted to fit in with the practical conditions in our country.The scale,landuse structure and the relations between the development zone and the old city are the basic issues in planning forthe development zones.These three essential elements constitute the pattern of planning which determines to a certainextent the success or failure of the development zones.展开更多
Room temperature operated sensor for detection of alcohol vapours in low ppm range based on TiO_2 functionalized nano-porous silicon(PSi) is demonstrated. The effect of functionalization by TiO_2 on PSi is investiga...Room temperature operated sensor for detection of alcohol vapours in low ppm range based on TiO_2 functionalized nano-porous silicon(PSi) is demonstrated. The effect of functionalization by TiO_2 on PSi is investigated using SEM, EDX, Raman spectroscopy, XRD and contact angle measurements. Sensing is accomplished by measuring change in resistance of the sensing layer using Cr-Au inter-digitatedelectrode(IDE) structure formed on top of the functionalized PSi layer. The sensors were tested for volatile organic compounds(VOCs) and water vapours in the wide range of 5–500 ppm concentration at room temperature. Functionalization of the nanostructured PSi by sputter deposited TiO_2 results in significant enhancement of sensitivity and inverse change in selectivity. PSi sensors have displayed strong response to water vapours whereas after functionalization, selective sensing to ethanol is depicted. Minimum detection by PSi sensors is portrayed at 100 ppm and that of functionalized sensors is at 10 ppm. Sensing mechanism is explained on the basis of surfaces and structures of both PSi and TiO_2. This study incites the importance of surface treatment of PSi for tuning the sensing properties and is useful in the development of selective alcohol sensors.展开更多
A transmission bottleneck occurs during each human immunodeficiency virus(HIV) transmission event, which allows only a few viruses to establish new infection. However, the genetic characteristics of the transmitted vi...A transmission bottleneck occurs during each human immunodeficiency virus(HIV) transmission event, which allows only a few viruses to establish new infection. However, the genetic characteristics of the transmitted viruses that are preferentially selected have not been fully elucidated. Here, we analyzed amino acids changes in the envelope protein during simian immunodeficiency virus(SIV)/HIV deep transmission history and current HIV evolution within the last 15–20 years. Our results confirmed that the V1V2 region of gp120 protein, particularly V1, was preferentially selected. A shorter V1 region was preferred during transmission history, while during epidemic, HIV may evolve to an expanded V1 region gradually and thus escape immune recognition. We then constructed different HIV-1 V1 mutants using different HIV-1 subtypes to elucidate the role of the V1 region in envelope function. We found that the V1 region, although highly variable, was indispensable for virus entry and infection, probably because V1 deletion mutants exhibited impaired processing of gp160 into mature gp120 and gp41. Additionally, the V1 region affected Env incorporation. These results indicated that the V1 region played a critical role in HIV transmission and infection.展开更多
While many avian populations follow narrow,well-defined"migratory corridors,"individuals from other populations undertake highly divergent individual migration routes,using widely dispersed stopover sites en...While many avian populations follow narrow,well-defined"migratory corridors,"individuals from other populations undertake highly divergent individual migration routes,using widely dispersed stopover sites en route between breeding and wintering areas,although the reasons for these differences are rarely investigated.We combined individual GPS-tracked migration data from Mongolian-breeding common shelduck Tadorna tadorna and remote sensing datasets,to in-vestigate habitat selection at inland stopover sites used by these birds during dispersed autumn migration,to explain their divergent migration patterns.We used generalized linear mixed models to investigate population-level resource selection,and generalized linear models to investigate stopover-sit-level resource selection.The population-level model showed that water recurrence had the strongest positive effect on determining birds'occupancy at staging sites,while cultivated land and grassland land cover type had strongest negative effects;effects of other land cover types were negative but weaker,particularly effects of wwater seasonality and presence of a human foot-print,which were positive but weak or non-significant,respectively.Although stopover-site-level models showed variable resource selection patterns,the variance partitioning and cross-prediction AUC scores corroborated high inter-individual consistency in habitat selection at inland stopover sites during the dispersed autumn migration.These results suggest that the geographically wide-spread distribution(and generally rarity)of suitable habitats explained the spatially divergent autumn migrations of Mongolian breeding common shelduck,rather than the species showing flexible autumn staging habitat occupancy.展开更多
The G-protein coupled receptors(GPCRs)play fundamental roles in the human biololgy and drug discovery.GPCRs function as signalling molecules that transduce extracellular signals into cells.The signalling transduction ...The G-protein coupled receptors(GPCRs)play fundamental roles in the human biololgy and drug discovery.GPCRs function as signalling molecules that transduce extracellular signals into cells.The signalling transduction is generally triggered by interacting with ligands,including photons,ions,small organic compounds,peptides,proteins and lipids.In this review,we focus on interactions with diffusible ligands such as hormones and neurotransmitters.We discuss three aspects of the complexity of the GPCR-ligand interactions:functional selectivity of ligands,receptor subtype selectivity of ligands and orphan GPCRs.展开更多
We study mean-field type optimal stochastic control problem for systems governed by mean-field controlled forward-backward stochastic differential equations with jump processes,in which the coefficients depend on the ...We study mean-field type optimal stochastic control problem for systems governed by mean-field controlled forward-backward stochastic differential equations with jump processes,in which the coefficients depend on the marginal law of the state process through its expected value.The control variable is allowed to enter both diffusion and jump coefficients.Moreover,the cost functional is also of mean-field type.Necessary conditions for optimal control for these systems in the form of maximum principle are established by means of convex perturbation techniques.As an application,time-inconsistent mean-variance portfolio selectionmixed with a recursive utility functional optimization problem is discussed to illustrate the theoretical results.展开更多
An efficient and profitable separation process was proposed to prepare 5N (the purity of the metal solution reaches 99.999%) high-purity nickel from 3N nickel-solutions using Purolite S984. The adsorption performanc...An efficient and profitable separation process was proposed to prepare 5N (the purity of the metal solution reaches 99.999%) high-purity nickel from 3N nickel-solutions using Purolite S984. The adsorption performance of this superior resin, especially its selectivity for metal ions, was explored quantitatively. The maximum adsorption capacity for copper was 2.286 mmol/g calculated by the Langmuir model, which was twice as large as that for nickel. In the binary systems, the adsorption capacity for nickel was decreased by 45%, indicating direct competition for the active sites. The infinite separation factor for copper versus nickel exceeded 300, revealing the feasibility of preparing 5N-level high-purity nickel solutions, which was further verified using the 800 BV (bed volume) effluent in the column dynamic process. According to the cost-benefit analysis, purification contributed to a profit of approximately 60,000 USD per cycle, and the investment return period was less than 1/3 years. Density functional theory analysis confirmed that four nitrogen atoms would be involved in the coordination complex and thus a structure involving two five-membered rings could be achieved. The X-ray photoelectron spectra confirmed the involvement of nitrogen atoms, implying a coordination ratio of approximately 1:1.展开更多
文摘In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.
基金supported by the National Natural Science Foundation of China (60904059 60975049)+1 种基金the Philosophy and Social Science Foundation of Hunan Province (2010YBA104)the National High Technology Research and Development Program of China (863 Program)(2009AA04Z107)
文摘A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.
基金supported by the National Natural Science Foundation of China,No.81360194a grant from the National Basic Research Program of China,No.2014CB542200
文摘Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate(Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.
基金The corresponding author would like to acknowledge the startupfunding from University College Cork.The authors appreciate many helpful discussions with Dr.Jianfeng Lifrom Process Systems Enterprise,New Jersey Office,USA.
文摘This paper presents a thorough study of particle impact breakage in selection function with a unified breakage criterion.The impact mode and breakage pattern for particulate materials are classified based on a significant review of well-established impact testers.It was found that the lack of a unified breakage criterion to determine the breakage probability disables a direct comparison of particle breakage propensity from different impact loading testers.The literature breakage models to describe the breakage probability are reviewed where the advantage and drawback of these models are scrutinized.The sourced literature breakage models are compared with the zeolite breakage datasets in a unified breakage criterion to evaluate the model performance.A novel computational modelling workflow for a milling process is proposed to provide a guidance in implementing the digital twin in milling process prediction.The breakage probability models,i.e.the selection functions are comprehensively assessed in population balance model to examine the model serviceability.The model simplicity and fidelity in the model assessment are specifically discussed and the value of digital twin in substantially reducing the experimental trials is highlighted.
文摘Proteostasis is critical for neuronal maintenance and survival, and its imbalance leads to neurodegeneration with the hallmark of protein misfolding and aggregation. Macroautophagy becomes a major route for the clearance of protein aggregates that are normally poor substrates for the proteasome, the other protein quality-control machinery. As a flux process, macroautophagy (hereafter referred to as autophagy) involves the formation of the autophagosome, a double-membrane vesicle for engulfing unwanted cellular components such as protein aggregates, and the fusion of autophagosomes with lysosomes that contain many potent proteases for final degradation.
文摘This article analyses different characteristics of scale,site selection and function of the current economic andtehnological development zones in our country.It further proposes that it is inappropriate for the economic andtechnological development zones to follow the“pattern of the special zones”,but a new pattern of“small scale,unitaryfunction and closeness to old city”should be adopted to fit in with the practical conditions in our country.The scale,landuse structure and the relations between the development zone and the old city are the basic issues in planning forthe development zones.These three essential elements constitute the pattern of planning which determines to a certainextent the success or failure of the development zones.
基金supported by the Department of Science and Technology (DST), Ministry of Science and Technology, Govt. of India, under the INSPIRE Faculty grant IFA 12-ENG-13MHRD, Government of India for providing the financial assistantship for research
文摘Room temperature operated sensor for detection of alcohol vapours in low ppm range based on TiO_2 functionalized nano-porous silicon(PSi) is demonstrated. The effect of functionalization by TiO_2 on PSi is investigated using SEM, EDX, Raman spectroscopy, XRD and contact angle measurements. Sensing is accomplished by measuring change in resistance of the sensing layer using Cr-Au inter-digitatedelectrode(IDE) structure formed on top of the functionalized PSi layer. The sensors were tested for volatile organic compounds(VOCs) and water vapours in the wide range of 5–500 ppm concentration at room temperature. Functionalization of the nanostructured PSi by sputter deposited TiO_2 results in significant enhancement of sensitivity and inverse change in selectivity. PSi sensors have displayed strong response to water vapours whereas after functionalization, selective sensing to ethanol is depicted. Minimum detection by PSi sensors is portrayed at 100 ppm and that of functionalized sensors is at 10 ppm. Sensing mechanism is explained on the basis of surfaces and structures of both PSi and TiO_2. This study incites the importance of surface treatment of PSi for tuning the sensing properties and is useful in the development of selective alcohol sensors.
基金supported by the International Science & Technology Cooperation Program of China (2011DFA31030)Deutsche Forschungsgemeinschaft (Transregio TRR60),National Natural Science Foundation of China (No.81461130019)
文摘A transmission bottleneck occurs during each human immunodeficiency virus(HIV) transmission event, which allows only a few viruses to establish new infection. However, the genetic characteristics of the transmitted viruses that are preferentially selected have not been fully elucidated. Here, we analyzed amino acids changes in the envelope protein during simian immunodeficiency virus(SIV)/HIV deep transmission history and current HIV evolution within the last 15–20 years. Our results confirmed that the V1V2 region of gp120 protein, particularly V1, was preferentially selected. A shorter V1 region was preferred during transmission history, while during epidemic, HIV may evolve to an expanded V1 region gradually and thus escape immune recognition. We then constructed different HIV-1 V1 mutants using different HIV-1 subtypes to elucidate the role of the V1 region in envelope function. We found that the V1 region, although highly variable, was indispensable for virus entry and infection, probably because V1 deletion mutants exhibited impaired processing of gp160 into mature gp120 and gp41. Additionally, the V1 region affected Env incorporation. These results indicated that the V1 region played a critical role in HIV transmission and infection.
基金the National Key Research and Development Program of China(Grant No.2017Y FC 0505800)the National Natural Science Foundation of China(Grant Nos.31661143027,31670424,and 31870369)+1 种基金the Chinese Academy of Sciences Key Strategic Program,Water Ecological Security Assessment,the Major Research Strategy for Middle and Lower Yangtze River(Grant No.ZDRW-ZS-2017-3-3)the China Biodiversity Observation Networks(Sino BON).
文摘While many avian populations follow narrow,well-defined"migratory corridors,"individuals from other populations undertake highly divergent individual migration routes,using widely dispersed stopover sites en route between breeding and wintering areas,although the reasons for these differences are rarely investigated.We combined individual GPS-tracked migration data from Mongolian-breeding common shelduck Tadorna tadorna and remote sensing datasets,to in-vestigate habitat selection at inland stopover sites used by these birds during dispersed autumn migration,to explain their divergent migration patterns.We used generalized linear mixed models to investigate population-level resource selection,and generalized linear models to investigate stopover-sit-level resource selection.The population-level model showed that water recurrence had the strongest positive effect on determining birds'occupancy at staging sites,while cultivated land and grassland land cover type had strongest negative effects;effects of other land cover types were negative but weaker,particularly effects of wwater seasonality and presence of a human foot-print,which were positive but weak or non-significant,respectively.Although stopover-site-level models showed variable resource selection patterns,the variance partitioning and cross-prediction AUC scores corroborated high inter-individual consistency in habitat selection at inland stopover sites during the dispersed autumn migration.These results suggest that the geographically wide-spread distribution(and generally rarity)of suitable habitats explained the spatially divergent autumn migrations of Mongolian breeding common shelduck,rather than the species showing flexible autumn staging habitat occupancy.
基金supported in part bythe National Institutes of Health(GM67168 to Dr.Yong Duan)computing resources at the National Supercomputing Center TeraGrid(MCB100132 to Dr.Ting Wang and MCA06N028 to Dr.Yong Duan)
文摘The G-protein coupled receptors(GPCRs)play fundamental roles in the human biololgy and drug discovery.GPCRs function as signalling molecules that transduce extracellular signals into cells.The signalling transduction is generally triggered by interacting with ligands,including photons,ions,small organic compounds,peptides,proteins and lipids.In this review,we focus on interactions with diffusible ligands such as hormones and neurotransmitters.We discuss three aspects of the complexity of the GPCR-ligand interactions:functional selectivity of ligands,receptor subtype selectivity of ligands and orphan GPCRs.
基金The first author was partially supported by Algerian CNEPRU Project Grant B01420130137,2014-2016.
文摘We study mean-field type optimal stochastic control problem for systems governed by mean-field controlled forward-backward stochastic differential equations with jump processes,in which the coefficients depend on the marginal law of the state process through its expected value.The control variable is allowed to enter both diffusion and jump coefficients.Moreover,the cost functional is also of mean-field type.Necessary conditions for optimal control for these systems in the form of maximum principle are established by means of convex perturbation techniques.As an application,time-inconsistent mean-variance portfolio selectionmixed with a recursive utility functional optimization problem is discussed to illustrate the theoretical results.
基金generous support provided by the National Natural Science Foundation of China (Nos. 51378253 and 51522805)the Discipline Crossing Foundation of Nanjing University
文摘An efficient and profitable separation process was proposed to prepare 5N (the purity of the metal solution reaches 99.999%) high-purity nickel from 3N nickel-solutions using Purolite S984. The adsorption performance of this superior resin, especially its selectivity for metal ions, was explored quantitatively. The maximum adsorption capacity for copper was 2.286 mmol/g calculated by the Langmuir model, which was twice as large as that for nickel. In the binary systems, the adsorption capacity for nickel was decreased by 45%, indicating direct competition for the active sites. The infinite separation factor for copper versus nickel exceeded 300, revealing the feasibility of preparing 5N-level high-purity nickel solutions, which was further verified using the 800 BV (bed volume) effluent in the column dynamic process. According to the cost-benefit analysis, purification contributed to a profit of approximately 60,000 USD per cycle, and the investment return period was less than 1/3 years. Density functional theory analysis confirmed that four nitrogen atoms would be involved in the coordination complex and thus a structure involving two five-membered rings could be achieved. The X-ray photoelectron spectra confirmed the involvement of nitrogen atoms, implying a coordination ratio of approximately 1:1.