Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance ...Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance of catalyst in hydrogenation and selective ring opening of tetralin, 1,2,3,4-tetrahydronaphthalene(THN), was studied. It was found that the optimal reaction conditions were at a temperature of 280 °C, hydrogen pressure of 4 MPa, liquid hourly space velocity of 2 h^-1 and H2/THN ratio of 750. Under these optimal conditions, a high conversion of almost 100% was achieved on the 0.3 Pt/USY catalyst. XRD patterns and TEM images revealed that Pt particles were highly dispersed on the USY, favorable to the hydrogenation reaction of tetralin. Ammonia temperature-programmed desorption and Py-IR results indicated that the introduction of Pt can reduce the acid sites of USY, particularly the strong acid sites of USY. Thus, the hydrocracking reaction can be suppressed.展开更多
This report presents a detailed density functional theory (DFT) study on the difference in regioselectivity for the copolymerization reactions of styrene oxide versus propylene oxide with CO2 utilizing binary (sale...This report presents a detailed density functional theory (DFT) study on the difference in regioselectivity for the copolymerization reactions of styrene oxide versus propylene oxide with CO2 utilizing binary (salen)cobalt(III) catalyst systems. This study focuses on the discrepancy of regioselective ring-opening of two terminal epoxides during the copolymerization with CO2. It was found that the nucleophilic ring-opening of styrene oxide occurred predominantly at the methine C a--O bond due to the election delocalization of phenyl group to stabilize the transition state for the methine C--O bond cleavage.展开更多
The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found th...The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found that the charge transfer resistance of Ti−3Cu alloy was 4.89×10^(5)Ω∙cm^(2),which was doubled the data obtained by CP-Ti alloy.The antibacterial rates of Ti−3Cu alloy against S.mutans and P.gingivalis were 45.0%and 54.5%.And the antibacterial rates increased with the prolongation of cultivation time,reaching up to 62.8%and 68.6%,respectively.The in-situ nano Ti_(2)Cu precipitates were homogeneously distributed in the matrix of the Ti−3Cu alloy,which was the key reason of increasing the corrosion resistance.Additionally,the microscale electric fields between theα-Ti matrix and the Ti_(2)Cu was responsible for the enhancement of the antibacterial properties.展开更多
Despite the extraordinary success has been achieved in metal catalyst-promoted stereoselective ring-opening polymerization(ROP) of rac-lactide(rac-LA), well-controlled stereoselective rac-LA ROP by organic catalys...Despite the extraordinary success has been achieved in metal catalyst-promoted stereoselective ring-opening polymerization(ROP) of rac-lactide(rac-LA), well-controlled stereoselective rac-LA ROP by organic catalyst still remains a scientific challenge. Here we report our investigations into organocatalytic stereoselective ROP of rac-LA by utilizing novel bulky chiral and achiral N-heterocyclic carbenes(NHC), 1,3-bis-(1′-naphthylethyl)imidazolin-2-ylidene. The effect of polymerization conditions(e.g. solvent, temperature, alcohol initiator) on ROP behavior by these bulky NHCs has been fully studied, leading to the formation of isotactic-rich stereoblock polylactide(Pi = 0.81) under optimized conditions with high activity(Conv. = 98% in 30 min) and narrow molecular weight dispersity(D = 1.05).展开更多
Substa ntial progresses have bee n made toward the developme nt of meta I-free catalysts for stereoselective rin g-ope ning polymeriza-tion(ROP)of rac-lactide.Yet the discovery of organic catalysts effective at ambien...Substa ntial progresses have bee n made toward the developme nt of meta I-free catalysts for stereoselective rin g-ope ning polymeriza-tion(ROP)of rac-lactide.Yet the discovery of organic catalysts effective at ambient temperature remains a major challenge.Here,the bifunctional H-bonding catalyst SQ-1 containing a basic tertiary amine and squaramide motif proved to be good candidate for the stereoselective ROP of rac-lactide at room temperature,yielding stereoregular polylactide with controlled molecular weights(up to 21.1 kg/mol)and high tacticity(PjESC up to 0.88).Furthermore,binary H-b on ding catalytic system con sisti ng of squaramides(SQ-2 to SQ-6)and 1,8-diazabicyclo[5.4.0]undec-7-ene(DBU)could efficiently promote the ROP of rac-lactide at room temperature within short reaction time.Among them,the most bulky squaramide SQ-2 exhibited the best steroselectivity towards the ROP of rac-lactide without transesterification side reactions during the polymerization process.The resulting polylactides were proved to have controlled molecular weights as high as 22.2 kg/mol and narrow distributions(1.10-1.24).展开更多
Catalytic enantioselective ring-opening of oxa-and aza-bicyclic alkenes with readily available accessible alkenylboronic acids,promoted by a chiral phosphine-Co complex,is reported.Such a process represents the unprec...Catalytic enantioselective ring-opening of oxa-and aza-bicyclic alkenes with readily available accessible alkenylboronic acids,promoted by a chiral phosphine-Co complex,is reported.Such a process represents the unprecedented Co-catalyzed introduction of various alkenyl groups onto the oxa-and aza-bicyclic alkenes,affording a wide range of multisubstituted functionalized cyclohexenes in up to 98%yield and 99.5:0.5 er.展开更多
A diastereoselectivity-controllable formal[3+2]-cycloaddition of arylvinyl oxirane 2,2-diesters with cyclic N-sulfonyl imines is developed,affording the corresponding tricyclic oxazolidine derivatives in moderate to e...A diastereoselectivity-controllable formal[3+2]-cycloaddition of arylvinyl oxirane 2,2-diesters with cyclic N-sulfonyl imines is developed,affording the corresponding tricyclic oxazolidine derivatives in moderate to excellent yields with excellent diastereoselectivities in the presence of palladium(0)or scandium(III)triflate.This protocol allows selective synthesis of diastereomers of tricyclic oxazolidine derivatives under switchable and mild conditions.Further transformations of the obtained products were conducted by removing ester groups and arylvinyl moieties.展开更多
A new route to synthesize β-iodo amines from sulfonyl aziridines and iodine was developed in the presence of PPh3. This ring-opening reaction was an efficient and simple process to give fl-iodo amines in excellent yi...A new route to synthesize β-iodo amines from sulfonyl aziridines and iodine was developed in the presence of PPh3. This ring-opening reaction was an efficient and simple process to give fl-iodo amines in excellent yields with high chemoselectivity.展开更多
Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF pos...Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.展开更多
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d...Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.展开更多
The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural...The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.展开更多
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst...Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.展开更多
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech...In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.展开更多
Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial deliv...Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.展开更多
Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn ...Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.展开更多
BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of ...BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of selective his bundle pacing(SHBP)that eliminated crochetage sign in a patient with ostium secundum ASD.CASE SUMMARY A 77-year-old man was admitted with a 2-year history of chest tightness and shortness of breath.Transthoracic echocardiography revealed an ostium secundum ASD.Twelve-lead electrocardiogram revealed atrial fibrillation with a prolonged relative risk interval,incomplete right bundle branch block,and crochetage sign.The patient was diagnosed with an ostium secundum ASD,atrial fibrillation with a second-degree atrioventricular block,and heart failure.The patient was treated with selective his bundle pacemaker implantation.After the procedure,crochetage sign disappeared during his bundle pacing on the electrocardiogram.CONCLUSION S-HBP eliminated crochetage sign on electrocardiogram.Crochetage sign may be a manifestation of a conduction system disorder.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low th...A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.展开更多
基金the National Natural Science Foundation of China (U1662103 and 21673290)the National HiTech Research and Development Program (863) of China (2015AA034603)the China National Offshore Oil Corporation Fund (LHYJYKJSA20160002)
文摘Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance of catalyst in hydrogenation and selective ring opening of tetralin, 1,2,3,4-tetrahydronaphthalene(THN), was studied. It was found that the optimal reaction conditions were at a temperature of 280 °C, hydrogen pressure of 4 MPa, liquid hourly space velocity of 2 h^-1 and H2/THN ratio of 750. Under these optimal conditions, a high conversion of almost 100% was achieved on the 0.3 Pt/USY catalyst. XRD patterns and TEM images revealed that Pt particles were highly dispersed on the USY, favorable to the hydrogenation reaction of tetralin. Ammonia temperature-programmed desorption and Py-IR results indicated that the introduction of Pt can reduce the acid sites of USY, particularly the strong acid sites of USY. Thus, the hydrocracking reaction can be suppressed.
基金financially supported by the National Natural Science Foundation of China(Nos.21134002 and 21174023)Program for Changjiang Scholars and Innovative Research Teams in University(No.IRT13008)the Chang Jiang Scholars Program(No.T2011056)from the Ministry of Education of China
文摘This report presents a detailed density functional theory (DFT) study on the difference in regioselectivity for the copolymerization reactions of styrene oxide versus propylene oxide with CO2 utilizing binary (salen)cobalt(III) catalyst systems. This study focuses on the discrepancy of regioselective ring-opening of two terminal epoxides during the copolymerization with CO2. It was found that the nucleophilic ring-opening of styrene oxide occurred predominantly at the methine C a--O bond due to the election delocalization of phenyl group to stabilize the transition state for the methine C--O bond cleavage.
基金financially supported by the National Natural Science Foundation of China(No.51404302)the Natural Science Foundation of Hunan Province,China(Nos.2020JJ4732,2022JJ30897)the Natural Science Foundation of Changsha City,China(No.kq2202430).
文摘The corrosion resistance and antibacterial properties of Ti−3Cu alloy prepared by selective laser melting were evaluated using electrochemical experiments and a variety of antibacterial characterization.It is found that the charge transfer resistance of Ti−3Cu alloy was 4.89×10^(5)Ω∙cm^(2),which was doubled the data obtained by CP-Ti alloy.The antibacterial rates of Ti−3Cu alloy against S.mutans and P.gingivalis were 45.0%and 54.5%.And the antibacterial rates increased with the prolongation of cultivation time,reaching up to 62.8%and 68.6%,respectively.The in-situ nano Ti_(2)Cu precipitates were homogeneously distributed in the matrix of the Ti−3Cu alloy,which was the key reason of increasing the corrosion resistance.Additionally,the microscale electric fields between theα-Ti matrix and the Ti_(2)Cu was responsible for the enhancement of the antibacterial properties.
基金financially supported by the Science and Technology Commission of Shanghai Municipality(No.17JC1401200)
文摘Despite the extraordinary success has been achieved in metal catalyst-promoted stereoselective ring-opening polymerization(ROP) of rac-lactide(rac-LA), well-controlled stereoselective rac-LA ROP by organic catalyst still remains a scientific challenge. Here we report our investigations into organocatalytic stereoselective ROP of rac-LA by utilizing novel bulky chiral and achiral N-heterocyclic carbenes(NHC), 1,3-bis-(1′-naphthylethyl)imidazolin-2-ylidene. The effect of polymerization conditions(e.g. solvent, temperature, alcohol initiator) on ROP behavior by these bulky NHCs has been fully studied, leading to the formation of isotactic-rich stereoblock polylactide(Pi = 0.81) under optimized conditions with high activity(Conv. = 98% in 30 min) and narrow molecular weight dispersity(D = 1.05).
基金Financial support received from NSFC(Nos.21704048,22031005)the Department of Science and Technology of Shandong Province(No.ZR2020LFG014)the Taishan Scholars Constructive Engineering Foundation(No.tsqn20161031)is gratefully acknowledged.
文摘Substa ntial progresses have bee n made toward the developme nt of meta I-free catalysts for stereoselective rin g-ope ning polymeriza-tion(ROP)of rac-lactide.Yet the discovery of organic catalysts effective at ambient temperature remains a major challenge.Here,the bifunctional H-bonding catalyst SQ-1 containing a basic tertiary amine and squaramide motif proved to be good candidate for the stereoselective ROP of rac-lactide at room temperature,yielding stereoregular polylactide with controlled molecular weights(up to 21.1 kg/mol)and high tacticity(PjESC up to 0.88).Furthermore,binary H-b on ding catalytic system con sisti ng of squaramides(SQ-2 to SQ-6)and 1,8-diazabicyclo[5.4.0]undec-7-ene(DBU)could efficiently promote the ROP of rac-lactide at room temperature within short reaction time.Among them,the most bulky squaramide SQ-2 exhibited the best steroselectivity towards the ROP of rac-lactide without transesterification side reactions during the polymerization process.The resulting polylactides were proved to have controlled molecular weights as high as 22.2 kg/mol and narrow distributions(1.10-1.24).
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.21702222,92056103,21821002,21404118)the Shanghai Rising-Star Program(Grant No.19QA1411000).
文摘Catalytic enantioselective ring-opening of oxa-and aza-bicyclic alkenes with readily available accessible alkenylboronic acids,promoted by a chiral phosphine-Co complex,is reported.Such a process represents the unprecedented Co-catalyzed introduction of various alkenyl groups onto the oxa-and aza-bicyclic alkenes,affording a wide range of multisubstituted functionalized cyclohexenes in up to 98%yield and 99.5:0.5 er.
基金supported by the National Natural Science Foundation of China(21861008,21761006)Guangxi Natural Science Foundation(2018GXNSFBA138037)+1 种基金Department of Science and Technology of Guangxi(AD19245049)“BAGUI Scholar”Program of Guangxi Province of China。
文摘A diastereoselectivity-controllable formal[3+2]-cycloaddition of arylvinyl oxirane 2,2-diesters with cyclic N-sulfonyl imines is developed,affording the corresponding tricyclic oxazolidine derivatives in moderate to excellent yields with excellent diastereoselectivities in the presence of palladium(0)or scandium(III)triflate.This protocol allows selective synthesis of diastereomers of tricyclic oxazolidine derivatives under switchable and mild conditions.Further transformations of the obtained products were conducted by removing ester groups and arylvinyl moieties.
基金We express our appreciation to the Anhui Provincial Natural Science Foundation
文摘A new route to synthesize β-iodo amines from sulfonyl aziridines and iodine was developed in the presence of PPh3. This ring-opening reaction was an efficient and simple process to give fl-iodo amines in excellent yields with high chemoselectivity.
基金supported by the National Nature Science Foundation of China (32222058, 32001274)the Youth Talent Support Program for Science & Technology Innovation of National Forestry and Grassland (2019132603) for financial support。
文摘Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF)(Nos.2022R1C1C1006593,2022R1A4A3031263,and RS-2023-00271166)the National Science Foundation(Nos.2054098 and 2213693)+1 种基金the National Natural Science Foundation of China(No.52105593)Zhejiang Provincial Natural Science Foundation of China(No.LDQ24E050001).EH acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation.
文摘Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.
基金supported by Program for National Natural Science Foundation of China(Nos.22178135,21978104 and 22278419)the National Key Research and Development Program of China(No.2021YFC2101601)。
文摘The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.
基金the National Natural Science Foundation of China(22368014)the Guizhou Provincial S&T Project(ZK[2022]011,GCC[2023]011)+2 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region(2023JJA120098)the Guangxi Key Laboratory of Green Chemical Materials and Safety Technology,the Beibu Gulf University(2022SYSZZ02,2022ZZKT04)the Guizhou Provincial Higher Education Institution Program(Qianjiaoji[2023]082)。
文摘Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金supported by the National Natural Science Foundation of China (Nos.51801079, 52001140)。
文摘In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.
文摘Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.
基金supported by the National Key Research and Development Program of China(2022YFE0206300)the National Natural Science Foundation of China(22209047,U21A2081,22075074)+2 种基金Natural Science Foundation of Hunan Province(2020JJ5035)Hunan Provincial Department of Education Outstanding Youth Project(23B0037)Macao Science and Technology Development Fund(Macao SAR,FDCT-0096/2020/A2).
文摘Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.
文摘BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of selective his bundle pacing(SHBP)that eliminated crochetage sign in a patient with ostium secundum ASD.CASE SUMMARY A 77-year-old man was admitted with a 2-year history of chest tightness and shortness of breath.Transthoracic echocardiography revealed an ostium secundum ASD.Twelve-lead electrocardiogram revealed atrial fibrillation with a prolonged relative risk interval,incomplete right bundle branch block,and crochetage sign.The patient was diagnosed with an ostium secundum ASD,atrial fibrillation with a second-degree atrioventricular block,and heart failure.The patient was treated with selective his bundle pacemaker implantation.After the procedure,crochetage sign disappeared during his bundle pacing on the electrocardiogram.CONCLUSION S-HBP eliminated crochetage sign on electrocardiogram.Crochetage sign may be a manifestation of a conduction system disorder.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
基金Funded by the Natural Science Foundation of Shanxi Province of China(Nos.202303021221177 and 202103021224063)the National Natural Science Foundation of China(No.52002159)。
文摘A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.