Compared with bulk-silicon technology, silicon-on-insulator (SOI) technology possesses many advan-tages but it is inevitable that the buried silicon dioxide layer also thermally insulates the metal – oxide – silicon...Compared with bulk-silicon technology, silicon-on-insulator (SOI) technology possesses many advan-tages but it is inevitable that the buried silicon dioxide layer also thermally insulates the metal – oxide – silicon field-effect transistors (MOSFETs) from the bulk due to the low thermal conductivity. One of the alternative insulator to replace the buried oxide layer is aluminum nitride (AlN), which has a thermal conductivity that is about 200 times higher than that of SiO2 (320 W·m ? 1·K? 1 versus 1.4 W·m? 1·K? 1). To investigate the self-heating effects of small-size MOSFETs fabricated on silicon-on-aluminum nitride (SOAN) substrate, a two-dimensional numerical analysis is performed by using a device simulator called MEDICI run on a Solaris workstation to simulate the electri-cal characteristics and temperature distribution by comparing with those of bulk and standard SOI MOSFETs. Our study suggests that AlN is a suitable alternative to silicon dioxide as a buried dielectric in SOI and expands the appli-cations of SOI to high temperature conditions.展开更多
An inherent self-heating effect of the silicon-on-insulator (SOI) devices limits their application at high current levels. In this paper a novel solution to reduce the self-heating effect is proposed, based on N+ and ...An inherent self-heating effect of the silicon-on-insulator (SOI) devices limits their application at high current levels. In this paper a novel solution to reduce the self-heating effect is proposed, based on N+ and O+ co-implantation into silicon wafer to form a new buried layer structure. This new structure was simulated using Medici program, and the temperature distribution and output characteristics were compared with those of the conventional SOI counterparts. As expected, a reduction of self-heating effect in the novel SOI device was observed.展开更多
A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-f...A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-field electron mobility and incomplete ionization rate, which are related to temperature, are presented in this model, which are used to estimate the self-heating effect of 4H-SiC MESFETs. The verification of the present model is made, and the good agreement between simulated results and measured data of DC I - V curves with the self-heating effect is obtained.展开更多
Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysi...Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.展开更多
The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing m...The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. More-over,the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydra-tion can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete.展开更多
Based on the heat diffusion equation of multilevel interconnects, a novel analytical thermal model for multilevel nano-scale interconnects considering the via effect is presented, which can compute quickly the tempera...Based on the heat diffusion equation of multilevel interconnects, a novel analytical thermal model for multilevel nano-scale interconnects considering the via effect is presented, which can compute quickly the temperature of multilevel interconnects, with substrate temperature given. Based on the proposed model and the 65 nm complementary metal oxide semiconductor (CMOS) process parameter, the temperature of nano-scale interconnects is computed. The computed results show that the via effect has a great effect on local interconnects, but the reduction of thermal conductivity has little effect on local interconnects. With the reduction of thermal conductivity or the increase of current density, however, the temperature of global interconnects rises greatly, which can result in a great deterioration in their performance. The proposed model can be applied to computer aided design (CAD) of very large-scale integrated circuits (VLSIs) in nano-scale technologies.展开更多
A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal–oxide–semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in th...A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal–oxide–semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in this paper. Based on this principle, the floating layer can pin the potential for modulating bulk field. In particular, the accumulated high concentration of holes at the bottom of the NFL can efficiently shield the electric field of the SOI layer and enhance the dielectric field in the buried oxide layer (BOX). At variation of back-gate bias, the shielding charges of NFL can also eliminate back-gate effects. The simulated results indicate that the breakdown voltage (BV) is increased from 315 V to 558 V compared to the conventional reduced surface field (RESURF) SOI (CSOI) LDMOS, yielding a 77% improvement. Furthermore, due to the field shielding effect of the NFL, the device can maintain the same breakdown voltage of 558 V with a thinner BOX to resolve the thermal problem in an SOI device.展开更多
We use an electro-thermal coupled Monte Carlo simulation framework to investigate the self-heating effect(SHE) in 14 nm bulk n Fin FETs with ambient temperature(TA) from 220 to 400 K. Based on this method, nonloca...We use an electro-thermal coupled Monte Carlo simulation framework to investigate the self-heating effect(SHE) in 14 nm bulk n Fin FETs with ambient temperature(TA) from 220 to 400 K. Based on this method, nonlocal heat generation can be achieved. Contact thermal resistances of Si/Metal and Si/Si O_2 are selected to ensure that the source and drain heat dissipation paths are the first two heat dissipation paths. The results are listed below:(i) not all input power(Q_(input) turns into heat generation in the device region and some is taken out by the thermal non-equilibrium carriers, owing to the serious non-equilibrium transport;(ii) a higher TA leads to a larger ratio of input power turning into heat generation in the device region at the same operating voltages;(iii) SHE can lead to serious degradation in the carrier transport, which will increase when TA increases;(iv) the current degradation can be 8.9% when Vds = 0.7 V, Vgs = 1 V and TA = 400 K;(v) device thermal resistance(Rth) increases with increasing of TA, which is seriously impacted by the non-equilibrium transport. Hence, the impact of TA should be carefully considered when investigating SHE in nanoscale devices.展开更多
To reduce the self-heating effect of strained Si grown on relaxed SiGe-on-insulator(SGOI) n-type metal-oxide-semiconductor field-effect transistors(nMOSFETs),this paper proposes a novel device called double step b...To reduce the self-heating effect of strained Si grown on relaxed SiGe-on-insulator(SGOI) n-type metal-oxide-semiconductor field-effect transistors(nMOSFETs),this paper proposes a novel device called double step buried oxide(BOX) SGOI,investigates its electrical and thermal characteristics,and analyzes the effect of self-heating on its electrical parameters.During the simulation of the device,a low field mobility model for strained Si MOSFETs is established and reduced thermal conductivity resulting from phonon boundary scattering is considered.A comparative study of SGOI nMOSFETs with different BOX thicknesses under channel and different channel strains has been performed.By reducing moderately the BOX thickness under the channel,the channel temperature caused by the self-heating effect can be effectively reduced.Moreover,mobility degradation,off state current and a short-channel effect such as drain induced barrier lowering can be well suppressed.Therefore,SGOI MOSFETs with a thinner BOX under the channel can improve the overall performance and long-term reliability efficiently.展开更多
SiGe SOI p-MOSFET在高频、高速、低功耗、抗辐射方面具有极大的优势。但二氧化硅埋层较低的热导率以及SiGe材料较低的热稳定性,使器件内部自加热效应的减弱或消除成为提高器件温度特性的关键因素。对应变SiGe SOI p-MOSFET温度特性机...SiGe SOI p-MOSFET在高频、高速、低功耗、抗辐射方面具有极大的优势。但二氧化硅埋层较低的热导率以及SiGe材料较低的热稳定性,使器件内部自加热效应的减弱或消除成为提高器件温度特性的关键因素。对应变SiGe SOI p-MOSFET温度特性机理进行研究,给出了三种缓解MOS-FET器件内部自加热效应的结构,并对其效果进行对比分析。结果表明:DSOI结构不适宜于低压全耗尽型SOI器件;Si3N4-DSOI结构对自加热的改善幅度较小;Si3N4埋层结构效果最好,尤其在低温领域改善更为明显。展开更多
Considering the self-heating effect, an accurate expression for the global interconnection resistance per unit length in terms of interconnection wire width and spacing is presented. Based on the proposed resistance m...Considering the self-heating effect, an accurate expression for the global interconnection resistance per unit length in terms of interconnection wire width and spacing is presented. Based on the proposed resistance model and according to the trade-off theory, a novel optimization analytical model of delay, power dissipation and bandwidth is derived. The proposed optimal model is verified and compared based on 90 nm, 65 nm and 40 nm CMOS technologies. It can be found that more optimum results can be easily obtained by the proposed model. This optimization model is more accurate and realistic than the conventional optimization models, and can be integrated into the global interconnection design ofnano-scale integrated circuits.展开更多
随着GaN功率应用朝着更高集成度与更高功率密度的方向发展,器件的自热效应及可靠性问题将变得更加严重。提出了一种开态漏极电流注入技术,模拟器件自热状态用以研究100 V P-GaN HEMT器件在自热效应下的可靠性问题。研究结果表明,应力中...随着GaN功率应用朝着更高集成度与更高功率密度的方向发展,器件的自热效应及可靠性问题将变得更加严重。提出了一种开态漏极电流注入技术,模拟器件自热状态用以研究100 V P-GaN HEMT器件在自热效应下的可靠性问题。研究结果表明,应力中器件自热温度可达40~150℃,阈值电压在应力后发生0.2~0.8 V的显著正向漂移。进一步通过室温与高温下的器件恢复研究以及电热仿真分析,证明了栅下区域与栅漏接入区域的高温极值点增强了该区域的受主型电子陷阱俘获行为并改变了栅极处载流子输运,这是导致P-GaN HEMT在自热效应下阈值电压不稳定性的主要原因,并建立了相对应的物理机理模型。展开更多
A new partial-SOI (PSOI) high voltage device structure called a CI PSOI (charge island PSOI) is proposed for the first time in this paper. The device is characterized by a charge island layer on the interface of t...A new partial-SOI (PSOI) high voltage device structure called a CI PSOI (charge island PSOI) is proposed for the first time in this paper. The device is characterized by a charge island layer on the interface of the top silicon layer and the dielectric buried layer in which a series of equidistant high concentration n+-regions is inserted. Inversion holes resulting from the vertical electric field are located in the spacing between two neighbouring n+-regions on the interface by the force with ionized donors in the undepleted n+-regions, and therefore effectively enhance the electric field of the dielectric buried layer (Ei) and increase the breakdown voltage (BV), thereby alleviating the self-heating effect (SHE) by the silicon window under the source. An analytical model of the vertical interface electric field for the CI PSOI is presented and the analytical results are in good agreement with the 2D simulation results. The BV and El of the CI PSOI LDMOS increase to 631 V and 584 V/μm from 246 V and 85.8 V/μm for the conventional PSOI with a lower SHE, respectively. The effects of the structure parameters on the device characteristics are analysed for the proposed device in detail.展开更多
The current voltage (IV) characteristics are greatly influenced by the dispersion effects in A1GaN/CaN high electron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to giv...The current voltage (IV) characteristics are greatly influenced by the dispersion effects in A1GaN/CaN high electron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to give a deep investigation into the dispersion effects, which are mainly related to the trap and self-heating mechanisms. The results show that traps play an important role in the kink effects, and high stress can introduce more traps and defects in the device. With the help of the pulsed IV measurements, the trapping effects and self-heating effects can be separated. The impact of time constants on the dispersion effects is also discussed. In order to achieve an accurate static DC IV measurement, the steady state of the bias points must be considered carefully to avoid the dispersion effects.展开更多
A new partial SOI (silion-on-insulator) (PSOI) high voltage P-channel LDMOS (lateral double-diffused metal-oxide semiconductor) with an interface hole islands (HI) layer is proposed and its breakdown character...A new partial SOI (silion-on-insulator) (PSOI) high voltage P-channel LDMOS (lateral double-diffused metal-oxide semiconductor) with an interface hole islands (HI) layer is proposed and its breakdown characteristics are investigated theoretically. A high concentration of charges accumulate on the interface, whose density changes with the negative drain voltage, which increase the electric field (Er) in the dielectric buried oxide layer (BOX) and modulate the electric field in drift region . This results in the enhancement of the breakdown voltage (BV). The values of E1 and BV of an HI PSOI with a 2-~m thick SOI layer over a 1-~tm thick buried layer are 580V/~m and -582 V, respectively, compared with 81.5 V/p.m and -123 V of a conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect (SHE). Moreover, in comparison with the conventional device, the proposed device exhibits low on-resistance.展开更多
This paper investigates the electrical characteristics and temperature distribution of strained Si/SiGe n-type metal oxide semiconductor field effect transistor (nMOSFET) fabricated on silicon-on-aluminum nitride (...This paper investigates the electrical characteristics and temperature distribution of strained Si/SiGe n-type metal oxide semiconductor field effect transistor (nMOSFET) fabricated on silicon-on-aluminum nitride (SOAN) substrate. This novel structure is named SGSOAN nMOSFET. A comparative study of self-heating effect of nMOSFET fabricated on SGOI and SGSOAN is presented. Numerical results show that this novel SGSOAN structure can greatly eliminate excessive self-heating in devices, which gives a more promising application for silicon on insulator to work at high temperatures.展开更多
基金Supported by the Special Funds for Major State Basic Research Projects (No.G2000036506)the National Natural Science Foundation of China (No. 60476006)
文摘Compared with bulk-silicon technology, silicon-on-insulator (SOI) technology possesses many advan-tages but it is inevitable that the buried silicon dioxide layer also thermally insulates the metal – oxide – silicon field-effect transistors (MOSFETs) from the bulk due to the low thermal conductivity. One of the alternative insulator to replace the buried oxide layer is aluminum nitride (AlN), which has a thermal conductivity that is about 200 times higher than that of SiO2 (320 W·m ? 1·K? 1 versus 1.4 W·m? 1·K? 1). To investigate the self-heating effects of small-size MOSFETs fabricated on silicon-on-aluminum nitride (SOAN) substrate, a two-dimensional numerical analysis is performed by using a device simulator called MEDICI run on a Solaris workstation to simulate the electri-cal characteristics and temperature distribution by comparing with those of bulk and standard SOI MOSFETs. Our study suggests that AlN is a suitable alternative to silicon dioxide as a buried dielectric in SOI and expands the appli-cations of SOI to high temperature conditions.
基金Supported by the Special Funds for Major State Basic Research Projects(NO.G20000365)and the National Natural Science Foundation of China(No.90101012)
文摘An inherent self-heating effect of the silicon-on-insulator (SOI) devices limits their application at high current levels. In this paper a novel solution to reduce the self-heating effect is proposed, based on N+ and O+ co-implantation into silicon wafer to form a new buried layer structure. This new structure was simulated using Medici program, and the temperature distribution and output characteristics were compared with those of the conventional SOI counterparts. As expected, a reduction of self-heating effect in the novel SOI device was observed.
基金Project supported by the National Defense Foundation of China (Grant No 51327010101)the National Natural Science Foundation of China (Grant No 60606022)
文摘A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-field electron mobility and incomplete ionization rate, which are related to temperature, are presented in this model, which are used to estimate the self-heating effect of 4H-SiC MESFETs. The verification of the present model is made, and the good agreement between simulated results and measured data of DC I - V curves with the self-heating effect is obtained.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0400100)the National Natural Science Foundation of China(Grant No.91850112)+3 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161401)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Science and Technology Project of State Grid Corporation of China(Grant No.SGSDDK00KJJS1600071)the Fundamental Research Funds for the Central Universities,China(Grant No.14380098)
文摘Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.
基金Funded by the Key Technologies R&D Program from Department of Science and Technology Hubei Province(200410G0121) "973" Pro-gram(001CB610704-3) from Ministry of Science and Technology of China
文摘The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. More-over,the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydra-tion can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60676009 and 60725415)the National High Technology Research and Development Program of China (Grant Nos 2009AA01Z258 and 2009AA01Z260)
文摘Based on the heat diffusion equation of multilevel interconnects, a novel analytical thermal model for multilevel nano-scale interconnects considering the via effect is presented, which can compute quickly the temperature of multilevel interconnects, with substrate temperature given. Based on the proposed model and the 65 nm complementary metal oxide semiconductor (CMOS) process parameter, the temperature of nano-scale interconnects is computed. The computed results show that the via effect has a great effect on local interconnects, but the reduction of thermal conductivity has little effect on local interconnects. With the reduction of thermal conductivity or the increase of current density, however, the temperature of global interconnects rises greatly, which can result in a great deterioration in their performance. The proposed model can be applied to computer aided design (CAD) of very large-scale integrated circuits (VLSIs) in nano-scale technologies.
文摘A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal–oxide–semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in this paper. Based on this principle, the floating layer can pin the potential for modulating bulk field. In particular, the accumulated high concentration of holes at the bottom of the NFL can efficiently shield the electric field of the SOI layer and enhance the dielectric field in the buried oxide layer (BOX). At variation of back-gate bias, the shielding charges of NFL can also eliminate back-gate effects. The simulated results indicate that the breakdown voltage (BV) is increased from 315 V to 558 V compared to the conventional reduced surface field (RESURF) SOI (CSOI) LDMOS, yielding a 77% improvement. Furthermore, due to the field shielding effect of the NFL, the device can maintain the same breakdown voltage of 558 V with a thinner BOX to resolve the thermal problem in an SOI device.
基金supported by the National Key Technology Research and Development Program of China(No.2016YFA0202101)the National Natural Science Foundation of China(Nos.61421005,61604005)+1 种基金the National High-Tech R&D Program(863 Program)(No.2015AA016501)The simulation was carried out at National Supercomputer Center in Tianjin,with Tian He-1(A)
文摘We use an electro-thermal coupled Monte Carlo simulation framework to investigate the self-heating effect(SHE) in 14 nm bulk n Fin FETs with ambient temperature(TA) from 220 to 400 K. Based on this method, nonlocal heat generation can be achieved. Contact thermal resistances of Si/Metal and Si/Si O_2 are selected to ensure that the source and drain heat dissipation paths are the first two heat dissipation paths. The results are listed below:(i) not all input power(Q_(input) turns into heat generation in the device region and some is taken out by the thermal non-equilibrium carriers, owing to the serious non-equilibrium transport;(ii) a higher TA leads to a larger ratio of input power turning into heat generation in the device region at the same operating voltages;(iii) SHE can lead to serious degradation in the carrier transport, which will increase when TA increases;(iv) the current degradation can be 8.9% when Vds = 0.7 V, Vgs = 1 V and TA = 400 K;(v) device thermal resistance(Rth) increases with increasing of TA, which is seriously impacted by the non-equilibrium transport. Hence, the impact of TA should be carefully considered when investigating SHE in nanoscale devices.
基金Project supported by the National Natural Science Foundation of China(Nos.60976068,60936005)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(No.708083)the Specialized Research Fund for the Doctoral Program of Higher Education,China(No.200807010010)
文摘To reduce the self-heating effect of strained Si grown on relaxed SiGe-on-insulator(SGOI) n-type metal-oxide-semiconductor field-effect transistors(nMOSFETs),this paper proposes a novel device called double step buried oxide(BOX) SGOI,investigates its electrical and thermal characteristics,and analyzes the effect of self-heating on its electrical parameters.During the simulation of the device,a low field mobility model for strained Si MOSFETs is established and reduced thermal conductivity resulting from phonon boundary scattering is considered.A comparative study of SGOI nMOSFETs with different BOX thicknesses under channel and different channel strains has been performed.By reducing moderately the BOX thickness under the channel,the channel temperature caused by the self-heating effect can be effectively reduced.Moreover,mobility degradation,off state current and a short-channel effect such as drain induced barrier lowering can be well suppressed.Therefore,SGOI MOSFETs with a thinner BOX under the channel can improve the overall performance and long-term reliability efficiently.
文摘SiGe SOI p-MOSFET在高频、高速、低功耗、抗辐射方面具有极大的优势。但二氧化硅埋层较低的热导率以及SiGe材料较低的热稳定性,使器件内部自加热效应的减弱或消除成为提高器件温度特性的关键因素。对应变SiGe SOI p-MOSFET温度特性机理进行研究,给出了三种缓解MOS-FET器件内部自加热效应的结构,并对其效果进行对比分析。结果表明:DSOI结构不适宜于低压全耗尽型SOI器件;Si3N4-DSOI结构对自加热的改善幅度较小;Si3N4埋层结构效果最好,尤其在低温领域改善更为明显。
基金supported by the National Natural Science Foundation of China(No.60606006)the Key Science&Technology Special Project of Shaanxi Province,China(No.2011KTCQ01-19)the National Defense Pre-Research Foundation of China(No.9140A23060111)
文摘Considering the self-heating effect, an accurate expression for the global interconnection resistance per unit length in terms of interconnection wire width and spacing is presented. Based on the proposed resistance model and according to the trade-off theory, a novel optimization analytical model of delay, power dissipation and bandwidth is derived. The proposed optimal model is verified and compared based on 90 nm, 65 nm and 40 nm CMOS technologies. It can be found that more optimum results can be easily obtained by the proposed model. This optimization model is more accurate and realistic than the conventional optimization models, and can be integrated into the global interconnection design ofnano-scale integrated circuits.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60436030 and 60806025)
文摘A new partial-SOI (PSOI) high voltage device structure called a CI PSOI (charge island PSOI) is proposed for the first time in this paper. The device is characterized by a charge island layer on the interface of the top silicon layer and the dielectric buried layer in which a series of equidistant high concentration n+-regions is inserted. Inversion holes resulting from the vertical electric field are located in the spacing between two neighbouring n+-regions on the interface by the force with ionized donors in the undepleted n+-regions, and therefore effectively enhance the electric field of the dielectric buried layer (Ei) and increase the breakdown voltage (BV), thereby alleviating the self-heating effect (SHE) by the silicon window under the source. An analytical model of the vertical interface electric field for the CI PSOI is presented and the analytical results are in good agreement with the 2D simulation results. The BV and El of the CI PSOI LDMOS increase to 631 V and 584 V/μm from 246 V and 85.8 V/μm for the conventional PSOI with a lower SHE, respectively. The effects of the structure parameters on the device characteristics are analysed for the proposed device in detail.
基金Project supported by the National Basic Research Program of China (Grant No.2010CB327503)the National Natural Science Foundation of China (Grant No.60890191)
文摘The current voltage (IV) characteristics are greatly influenced by the dispersion effects in A1GaN/CaN high electron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to give a deep investigation into the dispersion effects, which are mainly related to the trap and self-heating mechanisms. The results show that traps play an important role in the kink effects, and high stress can introduce more traps and defects in the device. With the help of the pulsed IV measurements, the trapping effects and self-heating effects can be separated. The impact of time constants on the dispersion effects is also discussed. In order to achieve an accurate static DC IV measurement, the steady state of the bias points must be considered carefully to avoid the dispersion effects.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60806025 and 60976060)the Funds of the National Laboratory of Analog Integrated Circuit (Grant No. 9140C0903070904)the Youth Teacher Foundation of the University of Electronic Science and Technology of China (Grant No. jx0721)
文摘A new partial SOI (silion-on-insulator) (PSOI) high voltage P-channel LDMOS (lateral double-diffused metal-oxide semiconductor) with an interface hole islands (HI) layer is proposed and its breakdown characteristics are investigated theoretically. A high concentration of charges accumulate on the interface, whose density changes with the negative drain voltage, which increase the electric field (Er) in the dielectric buried oxide layer (BOX) and modulate the electric field in drift region . This results in the enhancement of the breakdown voltage (BV). The values of E1 and BV of an HI PSOI with a 2-~m thick SOI layer over a 1-~tm thick buried layer are 580V/~m and -582 V, respectively, compared with 81.5 V/p.m and -123 V of a conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect (SHE). Moreover, in comparison with the conventional device, the proposed device exhibits low on-resistance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60976068 and 60936005)Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(Grant No.708083)Fundamental Research Funds for the Central Universities(Grant No.200807010010)
文摘This paper investigates the electrical characteristics and temperature distribution of strained Si/SiGe n-type metal oxide semiconductor field effect transistor (nMOSFET) fabricated on silicon-on-aluminum nitride (SOAN) substrate. This novel structure is named SGSOAN nMOSFET. A comparative study of self-heating effect of nMOSFET fabricated on SGOI and SGSOAN is presented. Numerical results show that this novel SGSOAN structure can greatly eliminate excessive self-heating in devices, which gives a more promising application for silicon on insulator to work at high temperatures.