A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ...A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.展开更多
The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddi...The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed.展开更多
Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have thi...Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have this potential. They are identified by morphostructural analysis. In this study, the Alborz region has considered as studied case and locations of future events are forecast based on Kohonen Self-Organized Neural Network. It has been shown how it can predict the location of earthquake, and identifies seismogenic nodes which are prone to earthquake of M5.5+ at the West of Alborz in Iran by using International Institute Earthquake Engineering and Seismology earthquake catalogs data. First, the main faults and tectonic lineaments have been identified based on MZ (land zoning method) method. After that, by using pattern recognition, we generalized past recorded events to future in order to show the region of probable future earthquakes. In other word, hazardous nodes have determined among all nodes by new catalog generated Self-organizing feature maps (SOFM). Our input data are extracted from catalog, consists longitude and latitude of past event between 1980-2015 with magnitude larger or equal to 4.5. It has concluded node D1 is candidate for big earthquakes in comparison with other nodes and other nodes are in lower levels of this potential.展开更多
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result...Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.展开更多
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing ...The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.展开更多
Amino acids are the dominant organic components of processed animal proteins,however there has been limited investigation of differences in their composition between various protein sources.Information on these differ...Amino acids are the dominant organic components of processed animal proteins,however there has been limited investigation of differences in their composition between various protein sources.Information on these differences will not only be helpful for their further utilization but also provide fundamental information for developing species-specific identification methods.In this study,self-organizing feature maps(SOFM) were used to visualize amino acid composition of fish meal,and meat and bone meal(MBM) produced from poultry,ruminants and swine.SOFM display the similarities and differences in amino acid composition between protein sources and effectively improve data transparency.Amino acid composition was shown to be useful for distinguishing fish meal from MBM due to their large concentration differences between glycine,lysine and proline.However,the amino acid composition of the three MBMs was quite similar.The SOFM results were consistent with those obtained by analysis of variance and principal component analysis but more straightforward.SOFM was shown to have a robust sample linkage capacity and to be able to act as a powerful means to link different sample for further data mining.展开更多
To overcome the problem that a single feature can not reflect the state of machinery in different stages,a method of vibration feature fusion based on self-organizing map(SOM) is presented.Minimum quantization error(M...To overcome the problem that a single feature can not reflect the state of machinery in different stages,a method of vibration feature fusion based on self-organizing map(SOM) is presented.Minimum quantization error(MQE) is obtained unsupervised based on SOM network.And trend information of the MQE curve is extracted by the wavelet packet to enhance state differentiating.Experimental flat is designed for bearing accelerating fatigue.And experimental results show that the method of vibration feature fusion based on SOM can reflect the state of machinery in different stages effectively.展开更多
Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made...Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made up by several paratactic 2-D SOFMs with inter-layer connections. By means of Monte Carlo simulations, virtual morphologies were generated to be the training samples. With the unsupervised inner-layer and inter-layer learning, the neural network can cluster different morphologies of messily grown nanowires and build connections between the morphological microstructure and geometrical features of nanowires within. Then, the as-proposed networks were applied on recognitions and quantitative estimations of the experimental morphologies. Results show that the as-trained SOFMs are able to cluster the morphologies and recognize the average length and quantity of the messily grown nanowires within. The inter-layer connections between winning neurons on each competitive layer have significant influence on the relations between the microstructure of the morphology and physical parameters of the nanowires within.展开更多
针对目前农用地分等方法中的存在的不足之处,提出将模糊理论、自组织特征映射(Se lf-O rgan iz ing F eature M ap,SOFM)网络与G IS相结合,构造出一种新的农用地分等模型—模糊SOFM-G IS空间聚类模型。并利用此模型对广东省高要市农用...针对目前农用地分等方法中的存在的不足之处,提出将模糊理论、自组织特征映射(Se lf-O rgan iz ing F eature M ap,SOFM)网络与G IS相结合,构造出一种新的农用地分等模型—模糊SOFM-G IS空间聚类模型。并利用此模型对广东省高要市农用地进行农用地分等评价,结果表明采用模糊SOFM-G IS空间聚类模型进行农用地分等评价具有稳定、结果可靠等特点。展开更多
文摘A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.
基金supported by National Natural Science Foundation of China(Grant No.51075323)
文摘The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed.
文摘Pattern recognition of seismic and mor- phostructural nodes plays an important role in seismic hazard assessment. This is a known fact in seismology that tectonic nodes are prone areas to large earthquake and have this potential. They are identified by morphostructural analysis. In this study, the Alborz region has considered as studied case and locations of future events are forecast based on Kohonen Self-Organized Neural Network. It has been shown how it can predict the location of earthquake, and identifies seismogenic nodes which are prone to earthquake of M5.5+ at the West of Alborz in Iran by using International Institute Earthquake Engineering and Seismology earthquake catalogs data. First, the main faults and tectonic lineaments have been identified based on MZ (land zoning method) method. After that, by using pattern recognition, we generalized past recorded events to future in order to show the region of probable future earthquakes. In other word, hazardous nodes have determined among all nodes by new catalog generated Self-organizing feature maps (SOFM). Our input data are extracted from catalog, consists longitude and latitude of past event between 1980-2015 with magnitude larger or equal to 4.5. It has concluded node D1 is candidate for big earthquakes in comparison with other nodes and other nodes are in lower levels of this potential.
文摘Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.
文摘The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
基金supported by the International Science and Technology Cooperation Project,Ministry of Science and Technology,China(2015DFG32170)
文摘Amino acids are the dominant organic components of processed animal proteins,however there has been limited investigation of differences in their composition between various protein sources.Information on these differences will not only be helpful for their further utilization but also provide fundamental information for developing species-specific identification methods.In this study,self-organizing feature maps(SOFM) were used to visualize amino acid composition of fish meal,and meat and bone meal(MBM) produced from poultry,ruminants and swine.SOFM display the similarities and differences in amino acid composition between protein sources and effectively improve data transparency.Amino acid composition was shown to be useful for distinguishing fish meal from MBM due to their large concentration differences between glycine,lysine and proline.However,the amino acid composition of the three MBMs was quite similar.The SOFM results were consistent with those obtained by analysis of variance and principal component analysis but more straightforward.SOFM was shown to have a robust sample linkage capacity and to be able to act as a powerful means to link different sample for further data mining.
文摘To overcome the problem that a single feature can not reflect the state of machinery in different stages,a method of vibration feature fusion based on self-organizing map(SOM) is presented.Minimum quantization error(MQE) is obtained unsupervised based on SOM network.And trend information of the MQE curve is extracted by the wavelet packet to enhance state differentiating.Experimental flat is designed for bearing accelerating fatigue.And experimental results show that the method of vibration feature fusion based on SOM can reflect the state of machinery in different stages effectively.
基金supported by the National Natural Science Foundation of China under Grant Nos. 51727804 and 51672223supported by the “111” project under grant No. B08040
文摘Multi-layer connected self-organizing feature maps(SOFMs) and the associated learning procedure were proposed to achieve efficient recognition and clustering of messily grown nanowire morphologies. The network is made up by several paratactic 2-D SOFMs with inter-layer connections. By means of Monte Carlo simulations, virtual morphologies were generated to be the training samples. With the unsupervised inner-layer and inter-layer learning, the neural network can cluster different morphologies of messily grown nanowires and build connections between the morphological microstructure and geometrical features of nanowires within. Then, the as-proposed networks were applied on recognitions and quantitative estimations of the experimental morphologies. Results show that the as-trained SOFMs are able to cluster the morphologies and recognize the average length and quantity of the messily grown nanowires within. The inter-layer connections between winning neurons on each competitive layer have significant influence on the relations between the microstructure of the morphology and physical parameters of the nanowires within.
文摘针对目前农用地分等方法中的存在的不足之处,提出将模糊理论、自组织特征映射(Se lf-O rgan iz ing F eature M ap,SOFM)网络与G IS相结合,构造出一种新的农用地分等模型—模糊SOFM-G IS空间聚类模型。并利用此模型对广东省高要市农用地进行农用地分等评价,结果表明采用模糊SOFM-G IS空间聚类模型进行农用地分等评价具有稳定、结果可靠等特点。