The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with eq...The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with equal amount of K_2CO_3 as acid acceptor. The structure of compound 3 was characterized by ~1H NMR, 13 C NMR, HRMS and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n with a = 5.7227(8), b = 27.924(4), c = 6.2282(7) ?, β = 101.892(11)°, V = 973.9(2) ?~3, Z = 4, T = 180.00(10) K, μ(MoKα) = 0.087 mm^(-1), Dc = 1.243 g/cm^3, 3832 reflections measured(3.648≤θ≤26.022°), 1916 unique reflections(Rint = 0.0359, Rsigma = 0.0572) used in all calculations. The final R = 0.0557(I 〉 2σ(I)) and w R = 0.1276(all data). Bioassay showed that 3 displayed excellent activity as plant growth regulator with inducing lateral root formation and enhancing primary root elongation at 0.27 mmol/L(50 ppm) in soybeen(He Feng-50). Good water solubility was found with 50 mg in 1 m L of water. Therefore, application of 3 in agriculture is more environmentally friendly due to cosolvent-free condition, and results in improved abiotic-stress tolerance by affecting the root growth. And furthermore, it can be used as a precursor to investigate the function of regulating plant root growth.展开更多
A self-regulating humidity material with bamboo for the room was prepared. The activated carbons were prepared with the temperature rising rates of 5, 10, 15, 20 ℃/min and constant temperatures of 600, 700, 800, 900,...A self-regulating humidity material with bamboo for the room was prepared. The activated carbons were prepared with the temperature rising rates of 5, 10, 15, 20 ℃/min and constant temperatures of 600, 700, 800, 900, 1 000, 1 100, 1 200, 1 300, 1 400, and 1 500 ℃ for 0.5, 1, 2, 3, and 6 h, respectively.And then their structures such as specific surface areas, volumes of pores from 3.7-7.1 nm and average pore diameters were tested. Various humidity conditions were simulated and their self-regulating humidity properties such as absorption/desorption contents, rates and stabilities were evaluated. The results show that the specific surface area, volume of pores from 3.7-7.1 nm and average pore diameter of activated carbon are closely nonlinearly related to the temperature rising rate, temperature and holding time. In general, the activated carbon prepared with the temperature rising rate of 5 ℃/min and kept at 1 100 ℃ for 2 h has the highest absorption/desorption content and rate, the lowest decay factor and then the best stability at all humidity for the fact that it is provided with proper average pore diameter, higher specific surface area and volume of pores from 3.7-7.1 nm. The activated carbons can be prepared with the temperature rising rate of 5 ℃/min and kept at 1000, 900,1 200, 1 300, 1 400, 1 500, 800, 700, and 600 ℃ respectively for 2 h. These resulted properties are attributed to their different average pore diameters and volumes of pores from 3.7-7.1 nm.展开更多
基金supported by the National Natural Science Foundation of China(No.2012BAD20B04)
文摘The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with equal amount of K_2CO_3 as acid acceptor. The structure of compound 3 was characterized by ~1H NMR, 13 C NMR, HRMS and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n with a = 5.7227(8), b = 27.924(4), c = 6.2282(7) ?, β = 101.892(11)°, V = 973.9(2) ?~3, Z = 4, T = 180.00(10) K, μ(MoKα) = 0.087 mm^(-1), Dc = 1.243 g/cm^3, 3832 reflections measured(3.648≤θ≤26.022°), 1916 unique reflections(Rint = 0.0359, Rsigma = 0.0572) used in all calculations. The final R = 0.0557(I 〉 2σ(I)) and w R = 0.1276(all data). Bioassay showed that 3 displayed excellent activity as plant growth regulator with inducing lateral root formation and enhancing primary root elongation at 0.27 mmol/L(50 ppm) in soybeen(He Feng-50). Good water solubility was found with 50 mg in 1 m L of water. Therefore, application of 3 in agriculture is more environmentally friendly due to cosolvent-free condition, and results in improved abiotic-stress tolerance by affecting the root growth. And furthermore, it can be used as a precursor to investigate the function of regulating plant root growth.
基金Funded by the National Natural Science Foundation of China(51678442,51578412,51478348,51508404,51878480,and 51878479)the National High-speed Train Union Fund(U1534207)+1 种基金the Key project of the Shanghai Committee of Science and Technology(No.15DZ1205003)the Fundamental Research Funds for the Central Universities
文摘A self-regulating humidity material with bamboo for the room was prepared. The activated carbons were prepared with the temperature rising rates of 5, 10, 15, 20 ℃/min and constant temperatures of 600, 700, 800, 900, 1 000, 1 100, 1 200, 1 300, 1 400, and 1 500 ℃ for 0.5, 1, 2, 3, and 6 h, respectively.And then their structures such as specific surface areas, volumes of pores from 3.7-7.1 nm and average pore diameters were tested. Various humidity conditions were simulated and their self-regulating humidity properties such as absorption/desorption contents, rates and stabilities were evaluated. The results show that the specific surface area, volume of pores from 3.7-7.1 nm and average pore diameter of activated carbon are closely nonlinearly related to the temperature rising rate, temperature and holding time. In general, the activated carbon prepared with the temperature rising rate of 5 ℃/min and kept at 1 100 ℃ for 2 h has the highest absorption/desorption content and rate, the lowest decay factor and then the best stability at all humidity for the fact that it is provided with proper average pore diameter, higher specific surface area and volume of pores from 3.7-7.1 nm. The activated carbons can be prepared with the temperature rising rate of 5 ℃/min and kept at 1000, 900,1 200, 1 300, 1 400, 1 500, 800, 700, and 600 ℃ respectively for 2 h. These resulted properties are attributed to their different average pore diameters and volumes of pores from 3.7-7.1 nm.