期刊文献+
共找到1,246篇文章
< 1 2 63 >
每页显示 20 50 100
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:2
1
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(som) neural network Urban storm
下载PDF
Software Reusability Classification and Predication Using Self-Organizing Map (SOM)
2
作者 Amjad Hudaib Ammar Huneiti Islam Othman 《Communications and Network》 2016年第3期179-192,共14页
Due to rapid development in software industry, it was necessary to reduce time and efforts in the software development process. Software Reusability is an important measure that can be applied to improve software deve... Due to rapid development in software industry, it was necessary to reduce time and efforts in the software development process. Software Reusability is an important measure that can be applied to improve software development and software quality. Reusability reduces time, effort, errors, and hence the overall cost of the development process. Reusability prediction models are established in the early stage of the system development cycle to support an early reusability assessment. In Object-Oriented systems, Reusability of software components (classes) can be obtained by investigating its metrics values. Analyzing software metric values can help to avoid developing components from scratch. In this paper, we use Chidamber and Kemerer (CK) metrics suite in order to identify the reuse level of object-oriented classes. Self-Organizing Map (SOM) was used to cluster datasets of CK metrics values that were extracted from three different java-based systems. The goal was to find the relationship between CK metrics values and the reusability level of the class. The reusability level of the class was classified into three main categorizes (High Reusable, Medium Reusable and Low Reusable). The clustering was based on metrics threshold values that were used to achieve the experiments. The proposed methodology succeeds in classifying classes to their reusability level (High Reusable, Medium Reusable and Low Reusable). The experiments show how SOM can be applied on software CK metrics with different sizes of SOM grids to provide different levels of metrics details. The results show that Depth of Inheritance Tree (DIT) and Number of Children (NOC) metrics dominated the clustering process, so these two metrics were discarded from the experiments to achieve a successful clustering. The most efficient SOM topology [2 × 2] grid size is used to predict the reusability of classes. 展开更多
关键词 Component Based System Development (CBSD) Software Reusability Software Metrics CLASSIFICATION self-organizing map (som)
下载PDF
基于SOM-BP的全自动口罩机传动系统故障检测
3
作者 彭来湖 刘旭东 万昌江 《软件工程》 2024年第5期39-44,共6页
针对口罩机在多工序生产中故障特征难以诊断的问题,提出了一种基于自组织映射(SOM)和误差反向传播网络(BP)的故障检测模型。首先针对4种减速机故障类型搭建SOM-BP复合型神经网络模型并完成检测分类,其次通过提取原振动信号的20组时域和... 针对口罩机在多工序生产中故障特征难以诊断的问题,提出了一种基于自组织映射(SOM)和误差反向传播网络(BP)的故障检测模型。首先针对4种减速机故障类型搭建SOM-BP复合型神经网络模型并完成检测分类,其次通过提取原振动信号的20组时域和频域参数作为SOM网络的输入样本进行初步聚类,并根据仿真结果确定最佳竞争层结构,最后将聚类后结果输入BP网络进行预测并完成分类,实现故障检测。研究结果表明,7×7竞争层结构下的SOM-BP复合型神经网络对于减速机的8种时域和频域参数的检测效果最优,分类准确率可达93.5%,173次迭代即可收敛,数据拟合度最高达0.99876,达到实际检测要求,验证了该方案的有效性和可行性。 展开更多
关键词 口罩机 自组织映射 BP神经网络 故障检测
下载PDF
A multiscale spatio-temporal framework to regionalize annual precipitation using k-means and self-organizing map technique 被引量:4
4
作者 Kiyoumars ROUSHANGAR Farhad ALIZADEH 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1481-1497,共17页
Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodol... Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization. 展开更多
关键词 PRECIPITATION Discrete wavelet transform (DWT) K-MEANS self organizing map(som) Iran
下载PDF
基于mRMR-SOM的异步电机轴承故障诊断研究
5
作者 刘文 周智勇 蔡巍 《机电工程》 北大核心 2024年第1期90-98,共9页
针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状... 针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状态下分别采集振动、电流和电压信号,利用统计学方法获取了高维混合特征集;然后,以互信息为背景,利用mRMR根据特征与状态标签间的相关性和特征间的冗余性,筛选了具备强区分能力的特征,以避免计算冗余和后验诊断性能下降;最后,采用SOM对异步电机健康和轴承故障状态进行了分类识别,验证了SOM对异步电机轴承故障诊断的有效性,以及mRMR对故障诊断结果的影响。研究结果表明:基于mRMR-SOM的异步电机轴承故障诊断方法能够准确地区分健康和故障状态,测试集分类准确率达到89%;使用mRMR特征筛选能够将154维特征降低至17维,缩短23.5%的网络收敛时间,并将分类准确率由89%提升至98%;试验结果验证了基于mRMR-SOM的异步电机轴承故障诊断方法对于异步电机轴承故障诊断问题的有效性,且证实其具备良好的诊断效果。 展开更多
关键词 自组织映射神经网络 最大相关最小冗余特征选择算法 互信息 特征降维 特征选择 神经网络算法 U矩阵
下载PDF
Application of Self-Organizing Map for Exploration of REEs’ Deposition 被引量:2
6
作者 Mohammadali Sarparandeh Ardeshir Hezarkhani 《Open Journal of Geology》 2016年第7期571-582,共12页
Varieties of approaches and algorithms have been presented to identify the distribution of elements. Previous researches based on the type of problem, categorized their data in proper clusters or classes. This means t... Varieties of approaches and algorithms have been presented to identify the distribution of elements. Previous researches based on the type of problem, categorized their data in proper clusters or classes. This means that the process of solution could be supervised or unsupervised. In cases, where there is no idea about dependency of samples to specific groups, clustering methods (unsupervised) are applied. About geochemistry data, since various elements are involved, in addition to the complex nature of geochemical data, clustering algorithms would be useful for recognition of elements distribution. In this paper, Self-Organizing Map (SOM) algorithm, as an unsupervised method, is applied for clustering samples based on REEs contents. For this reason the Choghart Fe-REE deposit (Bafq district, central Iran), was selected as study area and dataset was a collection of 112 lithology samples that were assayed with laboratory tests such as ICP-MS and XRF analysis. In this study, input vectors include 19 features which are coordinates x, y, z and concentrations of REEs as well as the concentration of Phosphate (P<sub>2</sub>O<sub>5</sub>) since the apatite is the main source of REEs in this particular research. Four clusters were determined as an optimal number of clusters using silhouette criterion as well as k-means clustering method and SOM. Therefore, using self-organizing map, study area was subdivided in four zones. These four zones can be described as phosphate type, albitofyre type, metasomatic and phosphorus iron ore, and Iron Ore type. Phosphate type is the most prone to rare earth elements. Eventually, results were validated with laboratory analysis. 展开更多
关键词 self organizing map (som) REES GEOCHEMISTRY Choghart Central Iran
下载PDF
Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map 被引量:7
7
作者 Zhengtao Gan Hengyang Li +5 位作者 Sarah J.Wolff Jennifer L.Bennett Gregory Hyatt Gregory J.Wagner Jian Cao Wing Kam Liu 《Engineering》 SCIE EI 2019年第4期730-735,共6页
To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measur... To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties. 展开更多
关键词 Additive manufacturing Data science MULTIPHYSICS modeling self-organIZING map MICROSTRUCTURE MICROHARDNESS NI-BASED SUPERALLOY
下载PDF
Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map 被引量:6
8
作者 WEISBERG Robert H 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期129-144,共16页
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal... Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years. 展开更多
关键词 circulation patterns self-organizing map satellite altimetry annual cycle inter-annual variation South China Sea
下载PDF
基于SOM的长江流域持续性强降水过程典型环流的客观分型
9
作者 杨雅涵 翟盘茂 周佰铨 《气象学报》 CAS CSCD 北大核心 2024年第5期632-644,共13页
利用1961—2021年逐日降水格点化观测资料和ERA5再分析资料,基于无监督深度学习的自组织特征映射神经网络(SOM)方法,将与中国长江流域夏季持续性强降水过程对应的大尺度环流客观划分成4种典型环流型(P1—P4)。各环流型呈现出的关键环流... 利用1961—2021年逐日降水格点化观测资料和ERA5再分析资料,基于无监督深度学习的自组织特征映射神经网络(SOM)方法,将与中国长江流域夏季持续性强降水过程对应的大尺度环流客观划分成4种典型环流型(P1—P4)。各环流型呈现出的关键环流系统配置影响异常雨带的形成及落区。P1和P3中、高纬度分别为典型的单阻型和双阻型环流形势,且西太平洋副热带高压(简称副高)显著偏强并向西延伸。P2和P4表现出较为明显的低压异常,P2中的巴尔喀什湖到贝加尔湖以西为宽广低槽,贝加尔湖以东为脊区,形成入梅期间的稳定环流形势,长江流域受到低值系统的控制,副高位置靠南。P4在巴尔喀什湖以西和以东分别表现出位势高度异常偏低和偏高,长江流域表现为气旋性环流异常,同时副高位置偏北。P1、P2有来自高纬度冷空气的影响,P3和P4的冷空气较弱。以副高北跳为主要特征的东亚夏季风向北推进与4种环流型的出现以及相应的雨带位置有紧密联系,P1、P2主要对应6月至7月上旬持续性强降水,P3、P4则主要对应7月上旬至8月持续性强降水,导致P1和P2降水异常中心位于长江中下游的江南地区,P3和P4的降水异常中心分别位于长江流域和长江以北地区。P1、P3的水汽输送相比另外两类明显偏强,造成的降水强度也更强。此外,对典型环流型的稳定性分析表明,长江流域持续性强降水过程与上述4种典型环流型的稳定维持密不可分。持续性强降水过程中93.2%的环流表现出持续性的特征,P1和P2、P3和P4持续天数分别主要集中在5和3 d。从长期趋势来看,P1和P3环流型出现频次增多,P2和P4趋于减少。这意味着从有利环流的角度来说,持续性强降水倾向于在长江以南和长江中下游地区发生。 展开更多
关键词 长江流域持续性强降水 逐日环流型 异常环流的稳定性 自组织特征映射网络
下载PDF
CLUSTERING PROPERTIES OF FUZZY KOHONEN'S SELF-ORGANIZING FEATURE MAPS 被引量:3
10
作者 彭磊 胡征 《Journal of Electronics(China)》 1995年第2期124-133,共10页
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ... A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate. 展开更多
关键词 self-organIZING feature mapS FUZZY sets MEMBERSHIP measure FUZZINESS mea-sure
下载PDF
基于自编码器的PCA-SOM公共服务资源配置评价与选址优化决策方法 被引量:1
11
作者 魏军 王华 +2 位作者 郭芳琳 张文波 杨蓉 《电信科学》 北大核心 2024年第2期158-168,共11页
当前城市规划和公共服务资源配置存在分配不均和选址效率低下的问题。将公共服务资源的电力消耗数据与其资源数量、区域人口数量相结合,基于主成分分析(principal component analysis,PCA)评估各区域公共服务资源的配置状况,并以兰州市... 当前城市规划和公共服务资源配置存在分配不均和选址效率低下的问题。将公共服务资源的电力消耗数据与其资源数量、区域人口数量相结合,基于主成分分析(principal component analysis,PCA)评估各区域公共服务资源的配置状况,并以兰州市为案例,运用自组织映射(self-organizingmapping,SOM)算法进行教育资源的优化选址。研究发现,电力数据能有效指示资源配置的不足,并为优化分配提供精确的指导。尤其在兰州市,SOM算法的应用不仅提高了教育资源选址的效率,还促进了资源的公平分配。不仅为甘肃省提供了公共服务资源配置的科学决策依据,也为其他地区在相似领域的研究提供了参考。 展开更多
关键词 公共服务资源配置 电力数据 主成分分析 自组织映射 选址优化
下载PDF
基于WGKSOM-DRCA自适应即时学习的转炉炼钢终点碳温软测量方法
12
作者 陈棕鑫 刘辉 +1 位作者 陈甫刚 刘建勋 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期103-117,共15页
转炉炼钢终点碳温的准确预测是实现转炉终点控制的关键。针对转炉生产过程数据存在波动性大和非线性特点引起传统即时学习度量的算法学习集质量低,进而削弱模型预测性能的问题,提出了一种基于加权高斯核自组织映射动态相关成分分析(WGKS... 转炉炼钢终点碳温的准确预测是实现转炉终点控制的关键。针对转炉生产过程数据存在波动性大和非线性特点引起传统即时学习度量的算法学习集质量低,进而削弱模型预测性能的问题,提出了一种基于加权高斯核自组织映射动态相关成分分析(WGKSOM-DRCA)自适应即时学习软测量建模方法用于转炉炼钢终点碳温预测。首先,采用引入标签信息的WGK度量准则构造WGKSOM聚类算法引导聚类方向,提高算法的聚类质量并降低类簇数据波动性对于建模的影响;其次,利用高斯后验概率计算待测样本的隶属度并通过引入动态因子构建DRCA度量策略,从而实现自适应的样本选择,进一步提升待测样本对应的局部算法学习集质量并用于局部模型训练,最终输出终点碳温的预测结果。实验表明,所提算法在转炉炼钢终点碳温预测上相对于其他算法有更好的表现,在±0.02%的预测误差范围,碳含量的预测精度为92%,在±10℃的误差范围,温度的预测精度为93.5%。 展开更多
关键词 转炉炼钢 即时学习 软测量 自组织映射 高斯核函数 相关成分分析
下载PDF
Adaptive Surrogate Model Based Optimization (ASMBO) for Unknown Groundwater Contaminant Source Characterizations Using Self-Organizing Maps 被引量:2
13
作者 Shahrbanoo Hazrati-Yadkoori Bithin Datta 《Journal of Water Resource and Protection》 2017年第2期193-214,共22页
Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source charac... Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source characterization an alternative methodology to the methodologies proposed earlier is developed. This methodology, Adaptive Surrogate Modeling Based Optimization (ASMBO) uses the capabilities of Self Organizing Map (SOM) algorithm to design the surrogate models and adaptive surrogate models for source characterization. The most important advantage of this methodology is its direct utilization for groundwater contaminant characterization without the necessity of utilizing a linked simulation optimization model. The validation of the SOM based surrogate models and SOM based adaptive surrogate models demonstrates that the quantity and quality of initial sample sizes have crucial role on the accuracy of solutions as the designed monitoring locations. The performance evaluation results of the proposed methodology are obtained using error free and erroneous concentration measurement data. These results demonstrate that the developed methodology could approximate groundwater flow and transport simulation models, and substitute the optimization model for characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity. 展开更多
关键词 self-organIZING map Surrogate MODELS ADAPTIVE Surrogate MODELS GROUNDWATER Contamination Source Identification
下载PDF
Intrusion Detection Method Based on Improved Growing Hierarchical Self-Organizing Map 被引量:2
14
作者 张亚平 布文秀 +2 位作者 苏畅 王璐瑶 许涵 《Transactions of Tianjin University》 EI CAS 2016年第4期334-338,共5页
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,... Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively. 展开更多
关键词 growing hierarchical self-organizing map(GHsom) hierarchical structure mutual information intrusion detection network security
下载PDF
基于SOM-FCM和KELM组合方法的短期光伏功率预测
15
作者 刘齐波 李军 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第2期204-215,共12页
为了提高短期光伏发电预测的精度,本文提出了一种将聚类后的自组织映射网络(SOM)与优化的核极值学习机(KELM)方法相结合的混合预测模型。首先,利用SOM来对训练数据集进行初始划分。然后,利用模糊C均值(FCM)对训练好的SOM网络进行聚类操... 为了提高短期光伏发电预测的精度,本文提出了一种将聚类后的自组织映射网络(SOM)与优化的核极值学习机(KELM)方法相结合的混合预测模型。首先,利用SOM来对训练数据集进行初始划分。然后,利用模糊C均值(FCM)对训练好的SOM网络进行聚类操作,同时利用Davies-Bouldin指数(DBI)来确定最佳聚类的大小。最后,在每个数据分区中,通过结合差分演化算法优化的KELM方法来建立区域KELM模型,或者结合最小二乘估计的多元线性回归(MR)方法来构建区域MR模型。此外,本文还提出了基于SOM的不同局部多元回归模型。将提出的结合SOM-FCM和KELM的混合预测模型分别应用于GEFCom2014三个不同太阳能电站,进行提前一小时的发电功率预测。与其他预测模型相比,光伏发电站1的平均绝对误差(MAE)降低了61.41%,光伏发电站2的MAE降低了60.19%,光伏发电站3的MAE降低了58.92%。光伏发电站1的均方根误差(RMSE)降低了52.06%,光伏发电站2的RMSE降低了54.56%,光伏发电站3的RMSE降低了51.43%。实验结果表明,提出的结合SOMFCM和KELM的方法可显著提高预测准确性。 展开更多
关键词 光伏发电 功率预测 自组织映射神经网络 区域建模方法 优化的核极限学习机(KELM)方法
下载PDF
基于SOM特征聚类及RBF神经网络的电力负荷预测方法研究 被引量:1
16
作者 郝文斌 孟志高 +3 位作者 张勇 谢波 彭攀 卫佳奇 《电力需求侧管理》 2024年第2期49-54,共6页
为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相... 为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相似特征的数据作为神经网络的训练样本,提高了样本规律性。采用粒子群算法(particle swarm optimization,PSO)修正神经网络粒子群速度及位置,以克服梯度下降、局部最优等问题对网络预测精度的影响。基于某地配电网电力负荷数据,验证了所提模型的有效性及良好的适应性。 展开更多
关键词 负荷预测 自组织映射聚类 径向基函数神经网络 粒子群优化算法
下载PDF
A New Dynamic Self-Organizing Method for Mobile Robot Environment Mapping 被引量:1
17
作者 Xiaogang Ruan Yuanyuan Gao +1 位作者 Hongjun Song Jing Chen 《Journal of Intelligent Learning Systems and Applications》 2011年第4期249-256,共8页
To solve the mapping problem for the mobile robots in the unknown environment, a dynamic growing self-organizing map with growing-threshold tuning automatically algorithm (DGSOMGT) based on Self-organizing Map is prop... To solve the mapping problem for the mobile robots in the unknown environment, a dynamic growing self-organizing map with growing-threshold tuning automatically algorithm (DGSOMGT) based on Self-organizing Map is proposed. It introduces a value of spread factor to describe the changing process of the growing threshold dynamically. The method realizes the network structure growing by training through mobile robot movement constantly in the unknown environment. The proposed algorithm is based on self-organizing map and can adjust the growing-threshold value by the number of network neurons increasing. It avoids tuning the parameters repeatedly by human. The experimental results show that the proposed method detects the complex environment quickly, effectively and correctly. The robot can realize environment mapping automatically. Compared with the other methods the proposed mapping strategy has better topological properties and time property. 展开更多
关键词 Mobile ROBOT Environment mapPING Growing-Threshold Tuning self-organIZING
下载PDF
融合SOM神经网络与K-means聚类算法的用户信用画像研究
18
作者 罗博炜 罗万红 谭家驹 《铁路计算机应用》 2024年第7期14-19,共6页
为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Me... 为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Means算法进行聚类分析。通过真实在线借贷平台数据对所提方法进行验证,结果表明,该方法可提升用户信用画像分析的质量,更好地满足金融数据分析中对实时管理和风险控制的要求,为金融机构提供精准的决策支持。 展开更多
关键词 用户信用画像 som神经网络 K-MEANS聚类算法 时间复杂度 风险控制
下载PDF
Customer Segmentation of Credit Card Default by Self Organizing Map
19
作者 Hui Wu Chang-Chun Wang 《American Journal of Computational Mathematics》 2018年第3期197-202,共6页
In this paper we applied the technique of Self Organizing Map (SOM) to segment individuals based on their credit information. SOM is an unsupervised machine learning method that reduces data complexity and dimensional... In this paper we applied the technique of Self Organizing Map (SOM) to segment individuals based on their credit information. SOM is an unsupervised machine learning method that reduces data complexity and dimensionality while keeping sits original topology, which is superior to other dimension reduction methods especially when features in data have unclear nonlinear relations. Through this method we provide more clear and intuitive segmentation that other traditional methods cannot achieve. 展开更多
关键词 self organIZING map Clustering Machine Learning CREDIT DEFAULT
下载PDF
Study of TSP based on self-organizing map
20
作者 宋锦娟 白艳萍 胡红萍 《Journal of Measurement Science and Instrumentation》 CAS 2013年第4期353-360,共8页
Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is dis... Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is discussed to obtain a faster convergence rate and better solution.Therefore,a new improved self-organizing map(ISOM)algorithm is introduced and applied to four traveling salesman problem instances for experimental simulation,and then the result of ISOM is compared with those of four SOM algorithms:AVL,KL,KG and MSTSP.Using ISOM,the average error of four travelingsalesman problem instances is only 2.895 0%,which is greatly better than the other four algorithms:8.51%(AVL),6.147 5%(KL),6.555%(KG) and 3.420 9%(MSTSP).Finally,ISOM is applied to two practical problems:the Chinese 100 cities-TSP and102 counties-TSP in Shanxi Province,and the two optimal touring routes are provided to the tourists. 展开更多
关键词 self-organizing maps (som traveling salesman problem (TSP) neural networkDocument code:AArticle ID:1674-8042(2013)04-0353-08
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部