Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the p...Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the practicing qualification personnel. And the impact factors on the credit classification of the practicing qualification personnel,such as the number of neurons,the training steps,the dimension of neurons and the field of winning neurons are studied. Then a self-organizing competitive neural network is built. At last,a case study is conducted by taking practicing qualification personnel as an example. The research result reveals that the method can efficiently evaluate the credit of the practicing qualification personnel;thus,it could provide scientific advice to the construction enterprise to prevent relevant discreditable behaviors of some practicing qualification personnel.展开更多
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu...Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.展开更多
The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our met...The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our method, the shortest paths between the source node and the other nodes are found to be self-organized by comparing node temperatures. The computation complexity of the method scales linearly with the number of edges on underlying networks. The effects of the method on several networks, including a regular network proposed by Ravasz and Barabasi which is called the RB network, a real network, a random network proposed by Ravasz and Barabasi which is called the ER network and a scale-free network, are also demonstrated. Analytic and simulation results show that the method has a higher accuracy and lower computational complexity than the conventional methods.展开更多
Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere...Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).展开更多
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn...The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.展开更多
Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5...Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best.展开更多
The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, p...The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly.展开更多
Decoupling of revenues with network traffic and extreme penetration of expenses in wireless network leads to the critical situation for wireless service providers (WSP), as more wireless network is complex due to its ...Decoupling of revenues with network traffic and extreme penetration of expenses in wireless network leads to the critical situation for wireless service providers (WSP), as more wireless network is complex due to its heterogeneity in the context of planning, software & hardware installation, radio parameters setting, drive testing, optimization, healing and maintenance. These operations are time-consuming, labor & budget-intensive and error-prone if activated manually. Hence new approaches have to be designed and applied to meet those demands in a cost-effective way, Self-organizing networks (SON), is a promising approach to handle manual tasks with autonomous manners. More specifically the self-directed functions (self-planning, self-deployment, self-configuration, self-optimization and self-healing) are aid to reduce capital expenditure (CAPEX), implementation expenditure (IMPEX) and operational expenditure (OPEX). In this study, first we investigate the aforementioned impact factors of cost combined with self-functions. Then, we analyze the relative cost benefits causing from deploying the SON functions, using the economical method to have more precise results concerning those potential benefits. At last, the result shows that there is a significant difference in expenses and revenues of WSP with and without SON after enabling self-functions in wireless network.展开更多
In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public k...In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public key management based on bidirectional trust model without any centralized authority that allows users to generate their public-private key pairs, to issue certificates, and the trust relation spreads rationally according to the truly human relations. In contrast with the traditional self-organized public-key management, the average certificates paths get more short, the authentication passing rate gets more high and the most important is that the bidirectional trust based model satisfys the trust re quirement of hosts better.展开更多
To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SO...To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.展开更多
We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the s...We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.展开更多
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,...Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively.展开更多
Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,c...Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.展开更多
The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we int...The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.展开更多
A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the expone...A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.展开更多
In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic ...In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.展开更多
Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compres...Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compression as a practical method. The long encoding time results from the need to perform a large number of domain-range matches, the total encoding time is the product of the number of matches and the time to perform each match. In order to improve encoding speed, a hybrid method combining features extraction and self-organization network has been provided, which is based on the feature extraction approach the comparison pixels by pixels between the feature of range blocks and domains blocks. The efficiency of the new method was been proved by examples.展开更多
In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm ...In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm are proposed in this paper. Compared with the traditional min-hops criterion, the new approach introduces a fuzzy knowledge combination theory to investigate several important factors that influence files transfer success rate and efficiency. Whereas the min-hops based protocols only ask the nearest candidate peer for desired files, the selection algorithm based on AOC comprehensively considers users' preferences and network requirements with flexible balancing rules. Furthermore, its advantage also expresses in the independence of specified resource discovering protocols, allowing for scalability. The simulation results show that when using the AOC based peer selection algorithm, system performance is much better than the rain-hops scheme, with files successful transfer rate improved more than 50% and transfer time re- duced at least 20%.展开更多
In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution wi...In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution with an exponent in a range of 3-to-5 is given. Moreover, this model could also reproduce the exponential distribution that is discovered in some real networks. Finally, the analytical result of the model is given and the simulation shows the validity of our result,展开更多
文摘Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the practicing qualification personnel. And the impact factors on the credit classification of the practicing qualification personnel,such as the number of neurons,the training steps,the dimension of neurons and the field of winning neurons are studied. Then a self-organizing competitive neural network is built. At last,a case study is conducted by taking practicing qualification personnel as an example. The research result reveals that the method can efficiently evaluate the credit of the practicing qualification personnel;thus,it could provide scientific advice to the construction enterprise to prevent relevant discreditable behaviors of some practicing qualification personnel.
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
基金supported by the National Key R&D Program of China (GrantN o.2016YFC0401407)National Natural Science Foundation of China (Grant Nos. 51479003 and 51279006)
文摘Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.
基金supported by the National Natural Science Foundation of China (Grant No 60672095)the National High-Tech Research and Development Program of China (Grant No 2007AA11Z210)+3 种基金the Doctoral Fund of Ministry of Education of China (Grant No 20070286004)the Natural Science Foundation of Jiangsu Province,China (Grant No BK2008281)the Science and Technology Program of Southeast University,China (Grant No KJ2009351)the Excellent Young Teachers Program of Southeast University,China (Grant No BG2007428)
文摘The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our method, the shortest paths between the source node and the other nodes are found to be self-organized by comparing node temperatures. The computation complexity of the method scales linearly with the number of edges on underlying networks. The effects of the method on several networks, including a regular network proposed by Ravasz and Barabasi which is called the RB network, a real network, a random network proposed by Ravasz and Barabasi which is called the ER network and a scale-free network, are also demonstrated. Analytic and simulation results show that the method has a higher accuracy and lower computational complexity than the conventional methods.
文摘Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).
文摘The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.
文摘Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best.
文摘The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly.
文摘Decoupling of revenues with network traffic and extreme penetration of expenses in wireless network leads to the critical situation for wireless service providers (WSP), as more wireless network is complex due to its heterogeneity in the context of planning, software & hardware installation, radio parameters setting, drive testing, optimization, healing and maintenance. These operations are time-consuming, labor & budget-intensive and error-prone if activated manually. Hence new approaches have to be designed and applied to meet those demands in a cost-effective way, Self-organizing networks (SON), is a promising approach to handle manual tasks with autonomous manners. More specifically the self-directed functions (self-planning, self-deployment, self-configuration, self-optimization and self-healing) are aid to reduce capital expenditure (CAPEX), implementation expenditure (IMPEX) and operational expenditure (OPEX). In this study, first we investigate the aforementioned impact factors of cost combined with self-functions. Then, we analyze the relative cost benefits causing from deploying the SON functions, using the economical method to have more precise results concerning those potential benefits. At last, the result shows that there is a significant difference in expenses and revenues of WSP with and without SON after enabling self-functions in wireless network.
基金Supported by the National Natural Science Funda-tion of China (60403027)
文摘In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public key management based on bidirectional trust model without any centralized authority that allows users to generate their public-private key pairs, to issue certificates, and the trust relation spreads rationally according to the truly human relations. In contrast with the traditional self-organized public-key management, the average certificates paths get more short, the authentication passing rate gets more high and the most important is that the bidirectional trust based model satisfys the trust re quirement of hosts better.
基金supported by the 863 Program (2015AA01A705)NSFC (61271187)
文摘To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.
基金Supported by the Education Foundation of Hubei Province under Grant No D20120104
文摘We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.
基金Supported by the Natural Science Foundation of Tianjin(No.15JCQNJC00200)
文摘Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (No. 61172050), Program for New Century Excellent Talents in University (NECT-12-0774), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2013D12), the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services. The corresponding author is Dr. Zhongshan Zhang.
文摘Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.
基金Supported by the National Natural Science Foundation of China under Grant No.10675060
文摘The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.
文摘A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.
基金supported by National Natural Science Foundation of China (No. 60674081,No. 60834002,No. 61074145)
文摘In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.
文摘Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compression as a practical method. The long encoding time results from the need to perform a large number of domain-range matches, the total encoding time is the product of the number of matches and the time to perform each match. In order to improve encoding speed, a hybrid method combining features extraction and self-organization network has been provided, which is based on the feature extraction approach the comparison pixels by pixels between the feature of range blocks and domains blocks. The efficiency of the new method was been proved by examples.
基金supported by the National Nature Science Foundation of China(No.60672124)the National High Technology Research and Development Programme the of China(No.2007AA01Z221)
文摘In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm are proposed in this paper. Compared with the traditional min-hops criterion, the new approach introduces a fuzzy knowledge combination theory to investigate several important factors that influence files transfer success rate and efficiency. Whereas the min-hops based protocols only ask the nearest candidate peer for desired files, the selection algorithm based on AOC comprehensively considers users' preferences and network requirements with flexible balancing rules. Furthermore, its advantage also expresses in the independence of specified resource discovering protocols, allowing for scalability. The simulation results show that when using the AOC based peer selection algorithm, system performance is much better than the rain-hops scheme, with files successful transfer rate improved more than 50% and transfer time re- duced at least 20%.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60374037 and 60574036), the Program for New Century Excellent Talents of High Education of China(Grant No NCET 2005-290), The Special Research Fund for the Doctoral Program of High Education of China (Grant No 20050055013).Acknowledgments The authors would like to thank Réka Albert for useful discussion and are grateful to the anonymous referees for their valuable suggestions and comments, which have made this paper improved.
文摘In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution with an exponent in a range of 3-to-5 is given. Moreover, this model could also reproduce the exponential distribution that is discovered in some real networks. Finally, the analytical result of the model is given and the simulation shows the validity of our result,