Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction r...Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction reliability.In this paper,combining the Russell fluid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson's ratio,we propose an effective matrix mineral bulk modulus extraction method.This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fluid prediction reliability.The verification of the actual material fluid substitution also shows that this method is reliable,efficient,and adaptable.展开更多
On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method...On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.展开更多
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat...Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.展开更多
The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to...The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to realize the self adapting incremental press bending by adopting the feature line equation. The feature line equation, which is based on the database of the status of practical processes, can be adjusted in time, and the forming precision can be improved. It is important to correctly select and reasonably predict the feature line equations to enhance the accuracy of the incremental press bending based on the feature line database and algorithm. The determination of the feature line equation settles necessary data foundation for further research on the database of self-adapting incremental press bending, and it supplies a new clue for the development of self-adapting incremental press bending.展开更多
Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a pro...Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide effective protection for Li metal.The protective film with an integrated design of high flexibility,strong adhesion and high Li-ion transference number(0.80)is fabricated by incorporating denatured zein(corn protein)with polyethylene oxide(PEO)acting as an age nt for sustaining the denatured protein chains against refolding via the intermolecular interactions between them.Thus,a conformable zein-enabled protective film(zein@PEO)with simultaneous en hancement in flexibility,modulus and adhesion strength is gen erated to offer both functi ons of self-adapting and anion-anchoring abilities.The results show that the zein@PEO film is able to accommodate the volume change,reduce the side reactions,and homogenize the ion deposition.Benefiting from these significant properties/fu nctions,the Li/Cu cell with the zein@PEO film delivers prolonged cycle life for over 500 hours with stable performance.Paired with LiMn_(2)O_(4) cathode,the capacity,cycle stability and rate performance of the cell are remarkably improved as well,demonstrati ng the effectiveness in stabilizing Li metal batteries.展开更多
A new admission control algorithm considering the network self-similar access characteristics is proposed. Taking advantage of the mathematical model of the network traffic admission control which can effectively over...A new admission control algorithm considering the network self-similar access characteristics is proposed. Taking advantage of the mathematical model of the network traffic admission control which can effectively overcome the self-similar characteristics of the network requests, through the scheduling of the differential service qucue based on priority while at the same time taking into account various factors including access characteristics of requests, load information, etc, smoothness of the admission control is ensured by the algorithm proposed in this paper. We design a non-linear self-adapting control algorithm by introducing an exponential admission function, thus overcomes the negative aspects introduced by static threshold parameters. Simulation results show that the scheme proposed in this paper can effectively improve the resource utilization of the clusters, while at the same time protecting the service with high priority. Our simulation results also show that this algorithm can improve system stability and reliability too. Key words Web cluster - admission control - differential service - self-similar - self-adapting CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (10375024) and the Hunan Natural Science Foundation of China(03JJY4054)Biography: LIU An-feng(1971-), male, Ph. D candidate, majoring in network computing, Web QoS.展开更多
Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable D...Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable DE(SSDE) algorithm,is proposed.Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm.Meanwhile,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching direction.Benchmark problems are used to verify this algorithm.Compared with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization.展开更多
A self-adapting and reconfigurable routing mechanism is proposed according to the average moving speed of the nodes in mobile ad hoc network (MANET). This mechanism is based on the perception of moving speed and a p...A self-adapting and reconfigurable routing mechanism is proposed according to the average moving speed of the nodes in mobile ad hoc network (MANET). This mechanism is based on the perception of moving speed and a predesigned selection metric to choose the optimal routing protocol. The routing evaluation and selection metric is derived by OPNET simulations. AODV and OLSR are used as the example to show the process of this mechanism with the moving speed varying. The routing protocol can be configured without central configuration and human management. Besides, the overhead of the mechanism is reasonable and doesnot affect the quality of service (QoS) of the traffic in the network. Results show that the optimal routing protocol can be configured adaptively according to the speed so that better performance than end-to-end delay and packet delivery ratio. a specific protocol can be obtained in terms of展开更多
With an aim at the job-shop scheduling problem of multiple resource constraints, this paper presents mixed self-adapting Genetic Algorithm ( GA ) , and establishes a job-shop optimal scheduling model of multiple res...With an aim at the job-shop scheduling problem of multiple resource constraints, this paper presents mixed self-adapting Genetic Algorithm ( GA ) , and establishes a job-shop optimal scheduling model of multiple resource constraints based on the effect of priority scheduling rules in the heuristic algorithm upon the scheduling target. New coding regulations or rules are designed. The sinusoidal function is adopted as the self-adapting factor, thus making cross probability and variable probability automatically change with group adaptability in such a way as to overcome the shortcoming in the heuristic algorithm and common GA, so that the operation efficiency is improved. The results from real example simulation and comparison with other algorithms indicate that the mixed self-adapting GA algorithm can well solve the job-shop optimal scheduling problem under the constraints of various kinds of production resources such as machine-tools and cutting tools.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device...Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.展开更多
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to...Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.展开更多
A suit of online self-adapting control (OSAC) approach has been developed to predict and optimize annealing craft system. The approach consists of three critical parts including prediction module, self-adapting opti...A suit of online self-adapting control (OSAC) approach has been developed to predict and optimize annealing craft system. The approach consists of three critical parts including prediction module, self-adapting optimization module, and self-learning amendment module. Firstly, the prediction module and self- adapting optimization module are based on the modeling methods. The self-adapting optimization module consists of two parts including "reappearance of annealed process" and "optimization of subsequent annealing process". Secondly, the self-learning amendment module, based on furnace atmosphere, equipment performance, and compensation coefficients, is designed to improve the accuracy of optimization results. The results obtained from the proposed approach, usually finished in about 3 min, are in good agreement with the test values, such as the deviation of temperature for hot-spot and cold-spot are within 10 K, the relative errors are within 1.1%, and the accuracy of annealing for heating period is increased by using self-learning amendment module.展开更多
The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of c...The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts.展开更多
A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive...A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive strategy of resources is required to deal with dynamic nature of requests based on run time change in workload.In this paper we proposed a Cloud-based Adaptive Resource Scheduling Strategy(CARSS)Framework that formally addresses these issues and is more expressive than traditional approaches.The decision making in CARSS is based on more than one factors.TheMAPE-K based framework determines the state of the resources based on their current utilization.Timed-Arc Petri Net(TAPN)is used to model system formally and behaviour is expressed in TCTL,while TAPAAL model checker verifies the underline properties of the system.展开更多
Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and ...Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.展开更多
We propose a computing model in which individuals can automatically adjust their interaction intensity with their mentor according to the learning effect.This model is designed to investigate the cooperative dynamics ...We propose a computing model in which individuals can automatically adjust their interaction intensity with their mentor according to the learning effect.This model is designed to investigate the cooperative dynamics of the spatial prisoner's dilemma.More specifically,when the cumulative payoff of a learner is more than his reference earning,he will strengthen his interaction with his mentor;otherwise,he will reduce it.The experimental results indicate that this mechanism can improve the emergence of cooperation in a networked population and that the driving coefficient of interaction intensity plays an important role in promoting cooperation.Interestingly,under a certain social dilemma condition,there exists a minimal driving coefficient that leads to optimal cooperation.This occurs due to a positive feedback effect between the individual's satisfaction frequency and the number of effective neighbors.Moreover,we find that the experimental results are in accord with theoretical predictions obtained from an extension of the classical pair-approximation method.Our conclusions obtained by considering relationships with mentors can provide a new perspective for future investigations into the dynamics of evolutionary games within structured populations.展开更多
Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pos...Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pose serious threat to drilling operations. Logging-whiledrilling (LWD) is currently used to accurately identify and evaluate cavities in reservoirs during drilling. In this study, we use the self-adaptive hp-FEM algorithm simulate and calculate the LWD resistivity responses of fracture-cavity reservoir cavities. Compared with the traditional h-FEM method, the self-adaptive hp-FEM algorithm has the characteristics of the self-adaptive mesh refinement and the calculations exponentially converge to highly accurate solutions. Using numerical simulations, we investigated the effect of the cavity size, distance between cavity and borehole, and transmitted frequency on the LWD resistivity response. Based on the results, a method for recognizing cavities is proposed. This research can provide the theoretical basis for the accurate identification and quantitative evaluation of various carbonate reservoirs with cavities encountered in practice.展开更多
Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustnes...Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.展开更多
Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is ina...Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D]展开更多
基金sponsored by National Natural Science Foundation of China(Grant No.40904035)
文摘Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction reliability.In this paper,combining the Russell fluid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson's ratio,we propose an effective matrix mineral bulk modulus extraction method.This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fluid prediction reliability.The verification of the actual material fluid substitution also shows that this method is reliable,efficient,and adaptable.
基金National Natural Science Foundation of China (50073002)
文摘On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.
基金This work was supported by the National Natural Science Foundation of China(No.60375001)the High School Doctoral Foundation of China(NO.20030532004).
文摘Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.
文摘The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to realize the self adapting incremental press bending by adopting the feature line equation. The feature line equation, which is based on the database of the status of practical processes, can be adjusted in time, and the forming precision can be improved. It is important to correctly select and reasonably predict the feature line equations to enhance the accuracy of the incremental press bending based on the feature line database and algorithm. The determination of the feature line equation settles necessary data foundation for further research on the database of self-adapting incremental press bending, and it supplies a new clue for the development of self-adapting incremental press bending.
基金supported by NSF CBET 1929236the support on microscopy characterizations from the Franceschi Microscopy & Imaging Center at Washington State University.
文摘Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide effective protection for Li metal.The protective film with an integrated design of high flexibility,strong adhesion and high Li-ion transference number(0.80)is fabricated by incorporating denatured zein(corn protein)with polyethylene oxide(PEO)acting as an age nt for sustaining the denatured protein chains against refolding via the intermolecular interactions between them.Thus,a conformable zein-enabled protective film(zein@PEO)with simultaneous en hancement in flexibility,modulus and adhesion strength is gen erated to offer both functi ons of self-adapting and anion-anchoring abilities.The results show that the zein@PEO film is able to accommodate the volume change,reduce the side reactions,and homogenize the ion deposition.Benefiting from these significant properties/fu nctions,the Li/Cu cell with the zein@PEO film delivers prolonged cycle life for over 500 hours with stable performance.Paired with LiMn_(2)O_(4) cathode,the capacity,cycle stability and rate performance of the cell are remarkably improved as well,demonstrati ng the effectiveness in stabilizing Li metal batteries.
文摘A new admission control algorithm considering the network self-similar access characteristics is proposed. Taking advantage of the mathematical model of the network traffic admission control which can effectively overcome the self-similar characteristics of the network requests, through the scheduling of the differential service qucue based on priority while at the same time taking into account various factors including access characteristics of requests, load information, etc, smoothness of the admission control is ensured by the algorithm proposed in this paper. We design a non-linear self-adapting control algorithm by introducing an exponential admission function, thus overcomes the negative aspects introduced by static threshold parameters. Simulation results show that the scheme proposed in this paper can effectively improve the resource utilization of the clusters, while at the same time protecting the service with high priority. Our simulation results also show that this algorithm can improve system stability and reliability too. Key words Web cluster - admission control - differential service - self-similar - self-adapting CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (10375024) and the Hunan Natural Science Foundation of China(03JJY4054)Biography: LIU An-feng(1971-), male, Ph. D candidate, majoring in network computing, Web QoS.
基金National Natural Science Foundation of China (No. 70971020)
文摘Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable DE(SSDE) algorithm,is proposed.Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm.Meanwhile,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching direction.Benchmark problems are used to verify this algorithm.Compared with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization.
文摘A self-adapting and reconfigurable routing mechanism is proposed according to the average moving speed of the nodes in mobile ad hoc network (MANET). This mechanism is based on the perception of moving speed and a predesigned selection metric to choose the optimal routing protocol. The routing evaluation and selection metric is derived by OPNET simulations. AODV and OLSR are used as the example to show the process of this mechanism with the moving speed varying. The routing protocol can be configured without central configuration and human management. Besides, the overhead of the mechanism is reasonable and doesnot affect the quality of service (QoS) of the traffic in the network. Results show that the optimal routing protocol can be configured adaptively according to the speed so that better performance than end-to-end delay and packet delivery ratio. a specific protocol can be obtained in terms of
基金This paper is supported by Shaanxi Natural Science Foundation of China under Grant No2004E202
文摘With an aim at the job-shop scheduling problem of multiple resource constraints, this paper presents mixed self-adapting Genetic Algorithm ( GA ) , and establishes a job-shop optimal scheduling model of multiple resource constraints based on the effect of priority scheduling rules in the heuristic algorithm upon the scheduling target. New coding regulations or rules are designed. The sinusoidal function is adopted as the self-adapting factor, thus making cross probability and variable probability automatically change with group adaptability in such a way as to overcome the shortcoming in the heuristic algorithm and common GA, so that the operation efficiency is improved. The results from real example simulation and comparison with other algorithms indicate that the mixed self-adapting GA algorithm can well solve the job-shop optimal scheduling problem under the constraints of various kinds of production resources such as machine-tools and cutting tools.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1C1C1008831).This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Ministry of Trade,Industry and Energy of Korea(No.RS-2023-00244330).S J P was supported by Basic Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025526).
文摘Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.
基金the State Grid Liaoning Electric Power Supply Co.,Ltd.(Research on Scheduling Decision Technology Based on Interactive Reinforcement Learning for Adapting High Proportion of New Energy,No.2023YF-49).
文摘Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.
基金Supported by the Specialized Research Project of WuhanIron and Steel Corporation (20050038)
文摘A suit of online self-adapting control (OSAC) approach has been developed to predict and optimize annealing craft system. The approach consists of three critical parts including prediction module, self-adapting optimization module, and self-learning amendment module. Firstly, the prediction module and self- adapting optimization module are based on the modeling methods. The self-adapting optimization module consists of two parts including "reappearance of annealed process" and "optimization of subsequent annealing process". Secondly, the self-learning amendment module, based on furnace atmosphere, equipment performance, and compensation coefficients, is designed to improve the accuracy of optimization results. The results obtained from the proposed approach, usually finished in about 3 min, are in good agreement with the test values, such as the deviation of temperature for hot-spot and cold-spot are within 10 K, the relative errors are within 1.1%, and the accuracy of annealing for heating period is increased by using self-learning amendment module.
基金the National Natural Science Foundation of China(22102126)the Natural Science Foundation of Hubei Province(2020CFB124)+2 种基金the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(Wuhan University of Science and Technology)the Hubei Provincial Department of Education for the"Chutian Scholar"programthe support of the"CUG Scholar"Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022187)。
文摘The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts.
文摘A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive strategy of resources is required to deal with dynamic nature of requests based on run time change in workload.In this paper we proposed a Cloud-based Adaptive Resource Scheduling Strategy(CARSS)Framework that formally addresses these issues and is more expressive than traditional approaches.The decision making in CARSS is based on more than one factors.TheMAPE-K based framework determines the state of the resources based on their current utilization.Timed-Arc Petri Net(TAPN)is used to model system formally and behaviour is expressed in TCTL,while TAPAAL model checker verifies the underline properties of the system.
基金supported by the Postdoctoral Science Foundation of China under Grant No.2020M683736partly by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456+2 种基金partly by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038partly by the Haiyan foundation of Harbin Medical University Cancer Hospital under Grant No.JJMS2021-28partly by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19.
文摘Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61963013).
文摘We propose a computing model in which individuals can automatically adjust their interaction intensity with their mentor according to the learning effect.This model is designed to investigate the cooperative dynamics of the spatial prisoner's dilemma.More specifically,when the cumulative payoff of a learner is more than his reference earning,he will strengthen his interaction with his mentor;otherwise,he will reduce it.The experimental results indicate that this mechanism can improve the emergence of cooperation in a networked population and that the driving coefficient of interaction intensity plays an important role in promoting cooperation.Interestingly,under a certain social dilemma condition,there exists a minimal driving coefficient that leads to optimal cooperation.This occurs due to a positive feedback effect between the individual's satisfaction frequency and the number of effective neighbors.Moreover,we find that the experimental results are in accord with theoretical predictions obtained from an extension of the classical pair-approximation method.Our conclusions obtained by considering relationships with mentors can provide a new perspective for future investigations into the dynamics of evolutionary games within structured populations.
基金supported by the National Natural Science Foundation of China(No. 41074099)
文摘Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pose serious threat to drilling operations. Logging-whiledrilling (LWD) is currently used to accurately identify and evaluate cavities in reservoirs during drilling. In this study, we use the self-adaptive hp-FEM algorithm simulate and calculate the LWD resistivity responses of fracture-cavity reservoir cavities. Compared with the traditional h-FEM method, the self-adaptive hp-FEM algorithm has the characteristics of the self-adaptive mesh refinement and the calculations exponentially converge to highly accurate solutions. Using numerical simulations, we investigated the effect of the cavity size, distance between cavity and borehole, and transmitted frequency on the LWD resistivity response. Based on the results, a method for recognizing cavities is proposed. This research can provide the theoretical basis for the accurate identification and quantitative evaluation of various carbonate reservoirs with cavities encountered in practice.
基金Supported by the National Natural Science Foundation of China (50505017)Fok Ying Tung Edu-cation Foundation (111056)+1 种基金the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics (BCXJ08-07)the New Century Excellent Talents in University,China (NCET-08)~~
文摘Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.
文摘Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D]