期刊文献+
共找到239,689篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of copper-coated MoS_(2) on friction performance of bronze-graphite-MoS_(2) self-lubricating materials 被引量:2
1
作者 WANG Hui-ling JIANG Feng +2 位作者 TONG Meng-meng WU Ming-jin JIANG Jing-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第11期3608-3619,共12页
Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N load... Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N loads respectively,and the effects of copper-coated MoS_(2) on the friction performances of the materials were studied.Results showed that the way of copper-coated on the surface of MoS_(2) could reinforce the bonding between MoS_(2) and matrix,and inhibited the formation of MoO_(2).Moreover,both materials formed a MoS_(2) lubricating film on the surface during the friction process.While the lubricating film formed after copper coating on MoS_(2) was thicker and had uneven morphology,it was more conducive to improving the friction performance of the material.Compared with conventional materials,the wear rate of copper-coated materials was reduced by one order of magnitude,and the friction coefficient was also reduced by 22.44% and 22.53%,respectively,when sliding under 4 N and 10 N loads.It shows that copper-coated MoS_(2)can improve friction properties of bronze-graphite-MoS_(2)self-lubricating materials furtherly. 展开更多
关键词 bronze-graphite-MoS_(2) self-lubricating material wear and tribology wear mechanism
下载PDF
Study on Solid Self-Lubricating Material for Plasma Facing Components in EAST
2
作者 谢韩 宋云涛 +2 位作者 姚达毛 王廷梅 杨丽君 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第6期738-742,共5页
In this study, the friction performance of self-lubricating material with the counterpart steel ball-plate rubbing was investigated in vacuum conditions and the thermal distortion of the heat sink sample was tested. T... In this study, the friction performance of self-lubricating material with the counterpart steel ball-plate rubbing was investigated in vacuum conditions and the thermal distortion of the heat sink sample was tested. The analysis and test results show that the self-lubricating ma- terial has excellent anti-friction properties in high vacuum condition and can decrease the thermal stress and avoid damage to the PFCs during physical experiments. 展开更多
关键词 TOKAMAK PFCS self-lubricating material
下载PDF
Recent advances in self-lubricating metal matrix nanocomposites reinforced by carbonous materials:A review
3
作者 Wenting Ye Yeran Shi +4 位作者 Qing Zhou Mingda Xie Haifeng Wang Benyebka Bou-Saïd Weimin Liu 《Nano Materials Science》 CSCD 2024年第6期701-713,共13页
Metal matrix self-lubricating materials lie at the core of cutting-edge aerospace,mechanical,and electrical industries,which demand technological performances that cannot be met by traditional liquid lubricants.Rapid ... Metal matrix self-lubricating materials lie at the core of cutting-edge aerospace,mechanical,and electrical industries,which demand technological performances that cannot be met by traditional liquid lubricants.Rapid innovation in nanocarbon materials in recent years enabled rapid development of advanced nanocomposites for applications in structural engineering and functional devices.Carbonous materials(e.g.,graphite,graphene and carbon nanotubes),exhibit a wide range of unique electrical,mechanical,and thermal properties,which are also considered ideal lubricating reinforcements for metal matrix nanocomposites(MMCs)with superior mechanical and tribological properties.In this review,we first showcase the distinctive features of the constituents commonly employed in self-lubricating MMCs,encompassing the high-strength metallic matrix and nano-carbonous reinforcement.Then,we present a comprehensive overview of the recent advancements in preparation techniques for these advanced MMCs,followed by an in-depth discussion on their corresponding tribological properties and wear mechanisms.We close this review by outlining key problems to be solved and the future trend of the development in self-lubricating MMCs. 展开更多
关键词 self-lubricating Metal matrix composites Wear resistance Nano-carbonous reinforcement
下载PDF
High‑Entropy Electrode Materials:Synthesis,Properties and Outlook
4
作者 Dongxiao Li Chang Liu +7 位作者 Shusheng Tao Jieming Cai Biao Zhong Jie Li Wentao Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期472-506,共35页
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c... High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials. 展开更多
关键词 High-entropy Energy storage Electrode materials
下载PDF
Recent Advances in Fibrous Materials for Hydroelectricity Generation
5
作者 Can Ge Duo Xu +10 位作者 Xiao Feng Xing Yang Zheheng Song Yuhang Song Jingyu Chen Yingcun Liu Chong Gao Yong Du Zhe Sun Weilin Xu Jian Fang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期109-133,共25页
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gas... Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis.Fibrous materials with unique flexibility,processability,multifunctionality,and practicability have been widely applied for fibrous materials-based hydroelectricity generation(FHG).In this review,the power generation mechanisms,design principles,and electricity enhancement factors of FHG are first introduced.Then,the fabrication strategies and characteristics of varied constructions including 1D fiber,1D yarn,2D fabric,2D membrane,3D fibrous framework,and 3D fibrous gel are demonstrated.Afterward,the advanced functions of FHG during water harvesting,proton dissociation,ion separation,and charge accumulation processes are analyzed in detail.Moreover,the potential applications including power supply,energy storage,electrical sensor,and information expression are also discussed.Finally,some existing challenges are considered and prospects for future development are sincerely proposed. 展开更多
关键词 HYDROELECTRICITY Fibrous material Streaming potential Ion diffusion
下载PDF
Preparation and applications of calcium ferrite as a functional material:A review
6
作者 Xiuli Han Bowen Duan +2 位作者 Lei Liu Shilong Fang Weiwei Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期292-310,共19页
Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,envir... Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization. 展开更多
关键词 calcium ferrite mineral functional materials PREPARATION APPLICATION PERSPECTIVES
下载PDF
Nanograting‑Based Dynamic Structural Colors Using Heterogeneous Materials
7
作者 Jingang Wang Haibo Yu +6 位作者 Jianchen Zheng Yuzhao Zhang Hongji Guo Ye Qiu Xiaoduo Wang Yongliang Yang Lianqing Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期138-151,共14页
Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov... Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips. 展开更多
关键词 Dynamic structural colors Four-dimensional printing PH-RESPONSIVE Nanogrid Heterogeneous materials
下载PDF
From waste to wealth:Coal tar residue derived carbon materials as low-cost anodes for potassium-ion batteries
8
作者 Zhonghua Lu Jun Shen +5 位作者 Xin Zhang Lingcong Chao Liang Chen Ding Zhang Tao Wei Shoudong Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期464-475,共12页
Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilizati... Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR. 展开更多
关键词 coal tar residue carbon materials ANODE potassium-ion batteries high value-added
下载PDF
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
9
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
下载PDF
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
10
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
下载PDF
Preparation and Performance of Ternary Early Strength Agent and Quercetin Composite Cement Sealing Material
11
作者 LIU Jian CHEN Meiting +2 位作者 JI Xiaoli XU Chao WANG Chunmei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期130-140,共11页
A ternary early-strengthening agent consisting of calcium formate+triethanolamine+lithium sulfate was compounded with quercetin to shorten the setting time of cementitious materials while ensuring their early strength... A ternary early-strengthening agent consisting of calcium formate+triethanolamine+lithium sulfate was compounded with quercetin to shorten the setting time of cementitious materials while ensuring their early strength.The optimum ratio of the three early-strengthening agents was determined as 0.5%calcium formate+0.04%triethanolamine+0.4%lithium sulfate by response surface methodology.The effects of the ternary early-strengthening agent composed of calcium formate+triethanolamine(TEA)+lithium sulfate on cementitious pore sealing materials under the synergistic effect of quercetin were studied by means of the performance tests of compressive strength,fluidity,and setting time,and the microstructural characterizations of X-ray powder diffractometer(XRD),thermogravimetry(TG-DSC)and scanning electron microscopy(SEM).The study shows that the synergistic effect of ternary early-strengthening agent and quercetin forms a multi-performance composite admixture for cementitious materials.The best performance was obtained with the compounding scheme of 0.5%calcium formate+0.04%triethanolamine+0.4%lithium sulfate ternary early-strengthening agent and 0.05%quercetin.The compressive strength of 1,3,7,and 28 d are 94.8%,39.8%,42%,and 28%higher than those of the blank group,respectively.The initial time and final setting time are 41 and 57 minutes,respectively.According to the microscopic analysis,the network and fibrous C-S-H gels generated by ternary early-strengthening agents are attached to the surface promoted by quercetin,which forms skeleton support while thickening and solidifying the cement slurry,which enhances the early compressive strength of the cement-based materials. 展开更多
关键词 sealing material ternary early-strengthening agent QUERCETIN synergetic effect response surface methodology
下载PDF
Oxidation Resistance of Form-stable Hightemperature Phase Change Thermal Energy Storage Materials Doped by Impregnated Graphite
12
作者 LI Baorang DAI Jianhuan +2 位作者 ZHANG Wei LIU Xiangchen YANG Liu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期1-12,共12页
We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change... We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance. 展开更多
关键词 phase change materials GRAPHITE impregnation method oxidation sintering thermal analysis
下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
13
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering Cathode materials Ion migration
下载PDF
Resistance of Cement-based Grouting Materials with Nano- SiO_(2) Emulsion to Chloride Ion Penetration
14
作者 LI Shuiping CHENG Jian +2 位作者 WEI Chao YUAN Bin YU Chengxiao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期114-119,共6页
The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride so... The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride solutions of specific concentrations with different test ages.Hardened properties of the mixes were assessed in terms of weight loss and compressive strength.X-ray diffraction(XRD)and scanning electron microscopy(SEM)of mixes were performed to analysis the phase evolution and microstructure.The results demonstrated that the introduction of nano-SiO_(2) emulsion significantly decreased the compressive strength loss and calcium hydroxide(CH)crystal content of hydration production,and then enhanced the resistance of cement-based grouting materials to chloride ion penetration.This improvement derives from the filling and pozzolanic effects of nano-SiO_(2) particles,which were incorporated via an emulsion and attributed to a well dispersion in grouting matrix. 展开更多
关键词 grouting materials nano-SiO_(2)emulsion chloride ion penetration weight loss strength loss
下载PDF
Optimization Strategies of Na_(3)V_(2)(PO_(4))_(3) Cathode Materials for Sodium‑Ion Batteries
15
作者 Jiawen Hu Xinwei Li +4 位作者 Qianqian Liang Li Xu Changsheng Ding Yu Liu Yanfeng Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期204-251,共48页
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab... Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs. 展开更多
关键词 Sodium-ion batteries Na_(3)V_(2)(PO_(4))_(3) Cathode materials Electrochemical performance Optimization strategies
下载PDF
A Greener Future: Carbon Nanomaterials from Lignocellulose
16
作者 Hebat-Allah S.Tohamy Mohamed El-Sakhawy Samir Kamel 《Journal of Renewable Materials》 2025年第1期21-47,共27页
Lignocellulosic materials(LCMs),abundant biomass residues,pose significant environmental challenges when improperly disposed of.LCMs,such as sugarcane bagasse,rice straw,saw dust and agricultural residues,are abun-dant... Lignocellulosic materials(LCMs),abundant biomass residues,pose significant environmental challenges when improperly disposed of.LCMs,such as sugarcane bagasse,rice straw,saw dust and agricultural residues,are abun-dant but often burned,contributing to air pollution and greenhouse gas emissions.This review explores the potential of transforming these materials into high-value carbon nanomaterials(CNMs).We explore the potential of transforming these materials into high-value CNMs.By employing techniques like carbonization and activa-tion,LCMs can be converted into various CNMs,including carbon nanotubes(CNTs),graphene(G),graphene oxide(GO),carbon quantum dots(CQDs),nanodiamonds(NDs),fullerenes(F),carbon nanofibers(CNFs),and others.Hybridizing different carbon allotropes further enhances their properties.CNMs derived from cellulose,lignin,and hemicellulose exhibit promising applications in diversefields.For instance,CNTs can be used in energy storage devices like batteries and supercapacitors due to their exceptional electrical conductivity and mechanical strength.Additionally,CNTs can be incorporated into recycled paper as afire retardant additive,enhancing itsflame resistance.G,renowned for its high surface area and excellent electrical conductivity,finds applications in electronics,sensors,catalysis,and water treatment,where it can be used to adsorb heavy metal ions.CQDs,owing to their unique optical properties,are used in bioimaging,drug delivery,and optoelectronic devices.By harnessing the potential of LCMs,we can not only mitigate environmental concerns but also contri-bute to a sustainable future.Continued research is essential to optimize synthesis methods,explore novel applica-tions,and unlock the full potential of these versatile materials. 展开更多
关键词 Lignocellulosic materials carbon-based nanomaterials carbon allotropes
下载PDF
Rainfall-induced wind erosion in soils stabilized with alkali-activated waste materials
17
作者 Alireza Komaei Abbas Soroush +1 位作者 Seyed Mohammad Fattahi Hesam Ghanbari 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期465-480,共16页
This study evaluates the efficacy of sustainable erosion control using slag-based alkali-activated cement crusts under varying rainfall and wind conditions. The rainfall intensities ranged from 30 mm/h to 120 mm/h, wi... This study evaluates the efficacy of sustainable erosion control using slag-based alkali-activated cement crusts under varying rainfall and wind conditions. The rainfall intensities ranged from 30 mm/h to 120 mm/h, with durations ranging from 15 min to 90 min, and crust slopes of ∼2° (gentle) and 30° (steep). Wind tunnel experiments were conducted at wind velocities of 14 m/s, 21 m/s, and 28 m/s to investigate post-rainfall wind erodibility, along with changes in crust strength and microstructure analysis. The findings show the development of hydrated cementitious phases in alkali-activated material, which form around and between the particles during the alkaline activation process. Alkali-activated cement crusts significantly reduced erosion caused by rainfall and subsequent wind by several orders of magnitude. At the highest rainfall intensity of 120 mm/h, rainfall erosion was measured to be 1654.81 kg/m2 for untreated samples and 0.89 kg/m2 for treated samples, demonstrating a substantial 99.95% reduction in erosion due to the treatment. Similarly, at the highest wind speed tested, wind erosion was 122.75 kg/m2 for untreated samples and 0.095 kg/m2 for treated samples, indicating a significant 99.92% reduction in erosion due to the formation of an alkali-activated cement crust on the soil surface. However, exposure of the samples to 120 mm/h rainfall for 90 min resulted in a 5.2-fold increase in wind erosion compared to pre-rainfall conditions. Similarly, penetrometer results indicated a 37%–54% reduction in post-rainfall surface strength. 展开更多
关键词 Rainfall erosion Alkali-activated material Wind erosion Crust formation
下载PDF
Recent progress in flexible sensors based on 2D materials
18
作者 Xiang Li Guancheng Wu +1 位作者 Caofeng Pan Rongrong Bao 《Journal of Semiconductors》 2025年第1期130-142,共13页
With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition... With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition.Two-dimensional(2D)materials have been widely welcomed by researchers as sensitive layers,which broadens the range and application of flexible sensors due to the advantages of their large specific surface area,tunable energy bands,controllable thickness at the atomic level,stable mechanical properties,and excellent optoelectronic properties.This review focuses on five different types of 2D materials for monitoring pressure,humidity,sound,gas,and so on,to realize the recognition and conversion of human body and environmental signals.Meanwhile,the main problems and possible solutions of flexible sensors based on 2D materials as sensitive layers are summarized. 展开更多
关键词 2D materials flexible sensors layered structure solution method
下载PDF
Recent developments in MQL machining of aeronautical materials:A comparative review
19
作者 Syed Hammad ALI Yu YAO +6 位作者 Bangfu WU Biao ZHAO Wenfeng DING Muhammad JAMIL Ahmar KHAN Asra BAIG Qi LIU Dongdong XU 《Chinese Journal of Aeronautics》 2025年第1期43-69,共27页
Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolan... Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed. 展开更多
关键词 Aerospace materials Minimum Quantity Lubrication(MQL) CRYOGENIC NANOFLUID GRINDING MILLING Sustainability
原文传递
Sensitivity Analysis of Structural Dynamic Behavior Based on the Sparse Polynomial Chaos Expansion and Material Point Method
20
作者 Wenpeng Li Zhenghe Liu +4 位作者 Yujing Ma Zhuxuan Meng Ji Ma Weisong Liu Vinh Phu Nguyen 《Computer Modeling in Engineering & Sciences》 2025年第2期1515-1543,共29页
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-... This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems. 展开更多
关键词 Structural dynamics DEFORMATION material point method sparse polynomial chaos expansion adaptive randomized greedy algorithm sensitivity analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部