期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Image Tagging by Semantic Neighbor Learning Using User-Contributed Social Image Datasets 被引量:2
1
作者 Feng Tian Xukun Shen +1 位作者 Xianmei Liu Maojun Cao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第6期551-563,共13页
The explosive increase in the number of images on the Internet has brought with it the great challenge of how to effectively index, retrieve, and organize these resources. Assigning proper tags to the visual content i... The explosive increase in the number of images on the Internet has brought with it the great challenge of how to effectively index, retrieve, and organize these resources. Assigning proper tags to the visual content is key to the success of many applications such as image retrieval and content mining. Although recent years have witnessed many advances in image tagging, these methods have limitations when applied to high-quality and large-scale training data that are expensive to obtain. In this paper, we propose a novel semantic neighbor learning method based on user-contributed social image datasets that can be acquired from the Web's inexhaustible social image content. In contrast to existing image tagging approaches that rely on high-quality image-tag supervision, we acquire weak supervision of our neighbor learning method by progressive neighborhood retrieval from noisy and diverse user-contributed image collections. The retrieved neighbor images are not only visually alike and partially correlated but also semantically related. We offer a step-by-step and easy-to-use implementation for the proposed method. Extensive experimentation on several datasets demonstrates that the performance of the proposed method significantly outperforms others. 展开更多
关键词 image tag social image tagging user-contributed datasets semantic neighbor learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部