期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
传统三段论的一个简明体系——基于直言命题语义与性质
1
作者 戴春勤 《毕节学院学报(综合版)》 2013年第3期44-47,共4页
传统逻辑中的直言命题其实是表达论域上两个集合外延关系、具有二元量化结构的命题的特例。直言命题的语义与对称性和周延的方向性等性质是三段论的根据,据此可以建立传统三段论简明体系。
关键词 二元量化结构 直言命题的语义和性质 三段论
下载PDF
中文动词及分类研究:中文动词词汇语义网的构建及应用 被引量:2
2
作者 刘美君 万明瑜 《辞书研究》 2019年第2期42-60,I0002,共20页
随着人工智能的日益发展,语言学成为"产""业""学"界寻求合作及突破的新契机。其中语言学语义资源的构建及标注问题成为了当前的一大热点及难点。文章针对中文动词语义分类问题,从理论研究、语义网构建及... 随着人工智能的日益发展,语言学成为"产""业""学"界寻求合作及突破的新契机。其中语言学语义资源的构建及标注问题成为了当前的一大热点及难点。文章针对中文动词语义分类问题,从理论研究、语义网构建及实践应用三方面进行了全面的探讨和分析。理论研究上,文章以"框架为本,构式为用"的研究方法为基石,依循框架语义和构式语法以区分动词和构式之间的"形-义"搭配,形成"格式塔"(Gestalt)般互补。语义网构建上,以语言学分析为基础,语料实证为依归,通过"框架元素"与"定义性构式"来定义动词属性,使语料兼有词汇表征、框架阶层及语义标注等信息。语义知识库目前包含"沟通""认知""感知""情绪""评价""社会互动""自动"和"致使移动"八大类框架动词,已有效运用于多种基于语义及事件框架的中文自然语言处理任务,包括中文语义自动消歧,自动语义角色标注,事件框架甄别及故事自动生成。 展开更多
关键词 框架语义 构式语法 动词分类 语义标注 自然语言处理
下载PDF
Low-Power Themes Classifier (LPTC): A Human-Expert-Based Approach for Classification of Scientific Papers/Theses with Low-Power Theme
3
作者 Mohsen Abasi Mohammad Bagher Ghaznavi-Ghoushchi 《Intelligent Information Management》 2012年第6期364-382,共19页
Document classification is widely applied in many scientific areas and academic environments, using NLP techniques and term extraction algorithms like CValue, TfIdf, TermEx, GlossEx, Weirdness and the others like. Nev... Document classification is widely applied in many scientific areas and academic environments, using NLP techniques and term extraction algorithms like CValue, TfIdf, TermEx, GlossEx, Weirdness and the others like. Nevertheless, they mainly have weaknesses in extracting most important terms when input text has not been rectified grammatically, or even has non-alphabetic methodical and math or chemical notations, and cross-domain inference of terms and phrases. In this paper, we propose a novel Text-Categorization and Term-Extraction method based on human-expert choice of classified categories. Papers are the training phase substances of the proposed algorithm. They have been already labeled with some scientific pre-defined field specific categories, by a human expert, especially one with high experiences and researches and surveys in the field. Our approach thereafter extracts (concept) terms of the labeled papers of each category and assigns all to the category. Categorization of test papers is then applied based on their extracted terms and further comparing with each category’s terms. Besides, our approach will produce semantic enabled outputs that are useful for many goals such as knowledge bases and data sets complement of the Linked Data cloud and for semantic querying of them by some languages such as SparQL. Besides, further finding classified papers’ gained topic or class will be easy by using URIs contained in the ontological outputs. The experimental results, comparing LPTC with five well-known term extraction algorithms by measuring precision and recall, show that categorization effectiveness can be achieved using our approach. In other words, the method LPTC is significantly superior to CValue, TfIdf, TermEx, GlossEx and Weirdness in the target study. As well, we conclude that higher number of papers for training, even higher precision we have. 展开更多
关键词 natural Language Processing (NLP) semantic Web Term Extraction Text categorIZATION Resource Description Framework (RDF) LOW-POWER THEME
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部