Reversible watermarking schemes for relational database are usually classified into two groups: robust schemes and fragile schemes. The main limitation of existing reversible fragile methods is that they cannot differ...Reversible watermarking schemes for relational database are usually classified into two groups: robust schemes and fragile schemes. The main limitation of existing reversible fragile methods is that they cannot differentiate between legal and malicious modifications. In this paper, we introduce a novel lossless semi-fragile scheme based on prediction-error expansion for content protection of relational database. In the proposed method, all attributes in a database relation are first classified according to their sensitivity to legitimate updates. Then, the watermark is embedded by expanding the prediction error of the two least significant digits of securely selected attributes. At watermark extraction, the proposed method has the ability to fully restore the original data while detecting and localizing tampering. The applicability of our method is demonstrated theoretically and experimentally.展开更多
A novel semi-fragile audio watermarking algorithm in DWT domain is proposed in this paper.This method transforms the original audio into 3-layer wavelet domain and divides approximation wavelet coefficients into many ...A novel semi-fragile audio watermarking algorithm in DWT domain is proposed in this paper.This method transforms the original audio into 3-layer wavelet domain and divides approximation wavelet coefficients into many groups.Through computing mean quantization of per group,this algorithm embeds the watermark signal into the average value of the wavelet coefficients.Experimental results show that our semi-fragile audio watermarking algorithm is not only inaudible and robust against various common images processing,but also fragile to malicious modification.Especially,it can detect the tampered regions effectively.展开更多
Two watermarks are embedded into the original image. One is the authentication watermark generated by secret key, which is embedded into the sub-LSB (Least Significant Bit) of the original image for tamper localizat...Two watermarks are embedded into the original image. One is the authentication watermark generated by secret key, which is embedded into the sub-LSB (Least Significant Bit) of the original image for tamper localization; the other is the recovery watermark for tamper recovering. The original image is divided into 8 x 8 blocks and each block is transformed by Discrete Cosine Transform (DCT). For each block, some lower frequency DCT coefficients are chosen to be quantized and binary encoded so as to gain the recovery watermark of each block, and the recovery watermark is embedded into the LSB of another block by chaos encryption and authentication chain technology. After the two watermarks being detected, the location of any minute changes in image can be detected, and the tampered image data can be recovered effectively. In the paper, the number of coefficients and their bit lengths are carefully chosen in order to satisfy with the payload of each block and gain the capability of self-recovering. The proposed algorithm can well resist against possible forged attacks. Experimental results show that the watermark generated by the proposed algorithm is sensitive to tiny changes in images, and it has higher accuracy of tamper localization and good capability of the tamper recovery.展开更多
This paper presents a new semi-fragile watermarking algorithm for image authentication which extracts image features from the low frequency domain to generate two watermarks: one for classifying of the intentional con...This paper presents a new semi-fragile watermarking algorithm for image authentication which extracts image features from the low frequency domain to generate two watermarks: one for classifying of the intentional content modification and the other for indicating the modified location. The algorithm provides an effective mechanism for image authentication. The watermark generation and watermark embedment are disposed in the image itself, and the received image authentication needs no information about the original image or watermark. The algorithm increases watermark security and prevents forged watermark. Experimental results show that the algorithm can identify intentional content modification and incidental tampering, and also indicate the location where a modification takes place.展开更多
This paper proposes an authentication scheme for JPEG images based on digital signature and semi-fragile watermarking. It can detect and locate malicious manipulations made to the image, and verify the ownership of th...This paper proposes an authentication scheme for JPEG images based on digital signature and semi-fragile watermarking. It can detect and locate malicious manipulations made to the image, and verify the ownership of the image at the same time. The algorithm uses the invariance of the order relationship between two DCT coefficients before and after JPEG compression to embed image content dependent watermark, therefore the watermark can survive the JPEG lossy compression. Since the scheme is based on the security of the cryptographic hash function and public key algorithm, it is believed to be secure to the extent that cryptography is believed to be. Theoretical analysis and experimental results show that the proposed scheme has the desired property and good performance for image authentication.展开更多
A novel semi-fragile watermarking scheme for the content authentication of images using wavelet transform(WT) is presented in this paper.It is tolerant to the embedded wavelet image compression methods based on WT suc...A novel semi-fragile watermarking scheme for the content authentication of images using wavelet transform(WT) is presented in this paper.It is tolerant to the embedded wavelet image compression methods based on WT such as embedded zerotree wavelet(EZW) ,set partitioning in hierarchical trees(SPIHT) and embedded block coding with optimized truncation(EBCOT) in JPEG2000 to a pre-determined bit-plane,but is sensitive to all other malicious attacks.The image features are generated from the lowest-frequency(LF) subband of the original image as the embedded watermark.The watermark is embedded into the pre-determined bit-plane by adjusting the corresponding values in the given subband.In the process of watermarking authentication,we compare the image features generated from the LF subband of the received image with the embedded watermarking information(the image features of the original image) extracted from the pre-determined bit-plane in the given subband of the received image to decide whether the image is attacked maliciously or processed acceptably(the embedded wavelet compression) .The most important advantage of our watermarking scheme is that the watermark information can be extracted from the watermarked image when detecting watermark,so the received image authentication needs no information about the original image or watermark.Experimental results prove the effectiveness of our proposed watermarking scheme.展开更多
A semi-fragile content authentication algorithm is proposed for low bit-rate H.264/AVC video in VLC domain. Utilizing the intra prediction mode and coded block pattern in VLC domain, the proposed algorithm chooses tho...A semi-fragile content authentication algorithm is proposed for low bit-rate H.264/AVC video in VLC domain. Utilizing the intra prediction mode and coded block pattern in VLC domain, the proposed algorithm chooses those macro-blocks from which the signature is extracted and constructs content signature at macro-block level according to the relationship among the energies of quantized low-frequency coefficients of sub-macroblocks. The signature is embedded by modifying the trailing coefficients. The experimental results show that the proposed algorithm performs well in visual quality impact and keep the bit-rate basically unchanged. In addition, the algorithm can embed signatures into I, P, B slices simultaneously and remarkably enhances the watermark capacity. By verifying the extracted signature, the algorithm can detect and locate video tampering efficiently.展开更多
In this paper, we propose a secure semi-fragile watermarking technique based on integer wavelet transform with a choice of two watermarks to be embedded. A self-recovering algorithm is employed, that hides the image d...In this paper, we propose a secure semi-fragile watermarking technique based on integer wavelet transform with a choice of two watermarks to be embedded. A self-recovering algorithm is employed, that hides the image digest into some wavelet subbands for detecting possible illicit object manipulation undergone in the image. The semi-fragility makes the scheme tolerant against JPEG lossy compression with the quality factor as low as 70%, and locates the tampered area accurately. In addition, the system ensures more security because the embedded watermarks are protected with private keys. The computational complexity is reduced by using parameterized integer wavelet transform. Experimental results show that the proposed scheme guarantees safety of a watermark, recovery of image and localization of tampered area.展开更多
This paper presents a robust lossless data hiding scheme. The original cover image can be recovered without any distortion after data extraction if the stego-image remains intact, and conversely, the hidden data can s...This paper presents a robust lossless data hiding scheme. The original cover image can be recovered without any distortion after data extraction if the stego-image remains intact, and conversely, the hidden data can still be extracted correctly if the stego-image goes through JPEG compression to some extent. A cover image is divided into a number of non-overlapping blocks, and the arithmetic difference of each block is calculated. By shifting the arithmetic difference value, we can embed bits into the blocks. The shift quantity and shifting rule are fixed for all blocks, and reversibility is achieved. Furthermore, because the bit-0- and bit-1-zones are separated and the particularity of the arithmetic differences, minor changes applied to the stego-image generated by non-malicious attacks such as JPEG compression will not cause the bit-0- and bit-l-zones to overlap, and robustness is achieved. The new embedding mechanism can enhance embedding capacity and the addition of a threshold can make the al- gorithm more robust. Experimental results showed that, compared with previous schemes, the performance of the proposed scheme is significantly improved.展开更多
Active tamper detection using watermarking technique can localize the tampered area and recover the lost information. In this paper, we propose an approach that the watermark is robust to legitimate lossy compression,...Active tamper detection using watermarking technique can localize the tampered area and recover the lost information. In this paper, we propose an approach that the watermark is robust to legitimate lossy compression, fragile to malicious tampering and capable of recovery. We embed the watermark bits in the direct current value of energy concentration transform domain coefficients. Let the original watermark bits be content dependent and apply error correction coding to them before embedded to the image. While indicating the tam- pered area, the extracted bits from a suspicious image can be further decoded and then used to roughly recover the corresponding area. We also theoretically study the image quality and bit error rate. ExperimentM results demonstrate the effectiveness of the proposed scheme.展开更多
文摘Reversible watermarking schemes for relational database are usually classified into two groups: robust schemes and fragile schemes. The main limitation of existing reversible fragile methods is that they cannot differentiate between legal and malicious modifications. In this paper, we introduce a novel lossless semi-fragile scheme based on prediction-error expansion for content protection of relational database. In the proposed method, all attributes in a database relation are first classified according to their sensitivity to legitimate updates. Then, the watermark is embedded by expanding the prediction error of the two least significant digits of securely selected attributes. At watermark extraction, the proposed method has the ability to fully restore the original data while detecting and localizing tampering. The applicability of our method is demonstrated theoretically and experimentally.
基金We wish to thank the National Basic Research Program of China (973 Program) for Grant 2007CB311203, the National Natural Science Foundation of China for Grant 60821001, the Specialized Research Fund for the Doctoral Program of Higher Education for Grant 20070013007 under which the present work was possible.
文摘A novel semi-fragile audio watermarking algorithm in DWT domain is proposed in this paper.This method transforms the original audio into 3-layer wavelet domain and divides approximation wavelet coefficients into many groups.Through computing mean quantization of per group,this algorithm embeds the watermark signal into the average value of the wavelet coefficients.Experimental results show that our semi-fragile audio watermarking algorithm is not only inaudible and robust against various common images processing,but also fragile to malicious modification.Especially,it can detect the tampered regions effectively.
基金Supported by the Special Fund of Doctor Subject of Ministry of Education (No.20060497005)
文摘Two watermarks are embedded into the original image. One is the authentication watermark generated by secret key, which is embedded into the sub-LSB (Least Significant Bit) of the original image for tamper localization; the other is the recovery watermark for tamper recovering. The original image is divided into 8 x 8 blocks and each block is transformed by Discrete Cosine Transform (DCT). For each block, some lower frequency DCT coefficients are chosen to be quantized and binary encoded so as to gain the recovery watermark of each block, and the recovery watermark is embedded into the LSB of another block by chaos encryption and authentication chain technology. After the two watermarks being detected, the location of any minute changes in image can be detected, and the tampered image data can be recovered effectively. In the paper, the number of coefficients and their bit lengths are carefully chosen in order to satisfy with the payload of each block and gain the capability of self-recovering. The proposed algorithm can well resist against possible forged attacks. Experimental results show that the watermark generated by the proposed algorithm is sensitive to tiny changes in images, and it has higher accuracy of tamper localization and good capability of the tamper recovery.
基金Supported by Hi-Tech R&D 863 Program of China (No. 20021111901010) and Scientific Research Fund of Hunan Provincial Education Department (No. 03A033)
文摘This paper presents a new semi-fragile watermarking algorithm for image authentication which extracts image features from the low frequency domain to generate two watermarks: one for classifying of the intentional content modification and the other for indicating the modified location. The algorithm provides an effective mechanism for image authentication. The watermark generation and watermark embedment are disposed in the image itself, and the received image authentication needs no information about the original image or watermark. The algorithm increases watermark security and prevents forged watermark. Experimental results show that the algorithm can identify intentional content modification and incidental tampering, and also indicate the location where a modification takes place.
文摘This paper proposes an authentication scheme for JPEG images based on digital signature and semi-fragile watermarking. It can detect and locate malicious manipulations made to the image, and verify the ownership of the image at the same time. The algorithm uses the invariance of the order relationship between two DCT coefficients before and after JPEG compression to embed image content dependent watermark, therefore the watermark can survive the JPEG lossy compression. Since the scheme is based on the security of the cryptographic hash function and public key algorithm, it is believed to be secure to the extent that cryptography is believed to be. Theoretical analysis and experimental results show that the proposed scheme has the desired property and good performance for image authentication.
文摘A novel semi-fragile watermarking scheme for the content authentication of images using wavelet transform(WT) is presented in this paper.It is tolerant to the embedded wavelet image compression methods based on WT such as embedded zerotree wavelet(EZW) ,set partitioning in hierarchical trees(SPIHT) and embedded block coding with optimized truncation(EBCOT) in JPEG2000 to a pre-determined bit-plane,but is sensitive to all other malicious attacks.The image features are generated from the lowest-frequency(LF) subband of the original image as the embedded watermark.The watermark is embedded into the pre-determined bit-plane by adjusting the corresponding values in the given subband.In the process of watermarking authentication,we compare the image features generated from the LF subband of the received image with the embedded watermarking information(the image features of the original image) extracted from the pre-determined bit-plane in the given subband of the received image to decide whether the image is attacked maliciously or processed acceptably(the embedded wavelet compression) .The most important advantage of our watermarking scheme is that the watermark information can be extracted from the watermarked image when detecting watermark,so the received image authentication needs no information about the original image or watermark.Experimental results prove the effectiveness of our proposed watermarking scheme.
基金This paper is sponsored by the National Natural Science Foundation of China (No. 60802057, 61071153), National 863 Plan of China ( 2009AA01Z407 ), Shanghai Rising-Star Program (10QA1403700), and Shanghai Educational Development Foundation.
文摘A semi-fragile content authentication algorithm is proposed for low bit-rate H.264/AVC video in VLC domain. Utilizing the intra prediction mode and coded block pattern in VLC domain, the proposed algorithm chooses those macro-blocks from which the signature is extracted and constructs content signature at macro-block level according to the relationship among the energies of quantized low-frequency coefficients of sub-macroblocks. The signature is embedded by modifying the trailing coefficients. The experimental results show that the proposed algorithm performs well in visual quality impact and keep the bit-rate basically unchanged. In addition, the algorithm can embed signatures into I, P, B slices simultaneously and remarkably enhances the watermark capacity. By verifying the extracted signature, the algorithm can detect and locate video tampering efficiently.
基金This work was supported by the Higher Education Commission of the Government of Pakistan under the Indigenous Ph.D.Scholarship Program(Grant No.17-5-1(Cu-180)HEC/Sch/2004/4343).
文摘In this paper, we propose a secure semi-fragile watermarking technique based on integer wavelet transform with a choice of two watermarks to be embedded. A self-recovering algorithm is employed, that hides the image digest into some wavelet subbands for detecting possible illicit object manipulation undergone in the image. The semi-fragility makes the scheme tolerant against JPEG lossy compression with the quality factor as low as 70%, and locates the tampered area accurately. In addition, the system ensures more security because the embedded watermarks are protected with private keys. The computational complexity is reduced by using parameterized integer wavelet transform. Experimental results show that the proposed scheme guarantees safety of a watermark, recovery of image and localization of tampered area.
基金supported in part by the Major Science and Technology Special Project of Zhejiang Province, China (No. 2007C11088)the Science and Technology Project of Zhejiang Province, China (No. 2008C21077)
文摘This paper presents a robust lossless data hiding scheme. The original cover image can be recovered without any distortion after data extraction if the stego-image remains intact, and conversely, the hidden data can still be extracted correctly if the stego-image goes through JPEG compression to some extent. A cover image is divided into a number of non-overlapping blocks, and the arithmetic difference of each block is calculated. By shifting the arithmetic difference value, we can embed bits into the blocks. The shift quantity and shifting rule are fixed for all blocks, and reversibility is achieved. Furthermore, because the bit-0- and bit-1-zones are separated and the particularity of the arithmetic differences, minor changes applied to the stego-image generated by non-malicious attacks such as JPEG compression will not cause the bit-0- and bit-l-zones to overlap, and robustness is achieved. The new embedding mechanism can enhance embedding capacity and the addition of a threshold can make the al- gorithm more robust. Experimental results showed that, compared with previous schemes, the performance of the proposed scheme is significantly improved.
基金the National Natural Science Foundation of China(Nos.61071152 and 61271316)the National Basic Research Program (973) of China(Nos.2010CB731406 and 2013CB329605)the National "Twelfth Five-Year" Plan for Science&Technology Support(No.2012BAH38B04)
文摘Active tamper detection using watermarking technique can localize the tampered area and recover the lost information. In this paper, we propose an approach that the watermark is robust to legitimate lossy compression, fragile to malicious tampering and capable of recovery. We embed the watermark bits in the direct current value of energy concentration transform domain coefficients. Let the original watermark bits be content dependent and apply error correction coding to them before embedded to the image. While indicating the tam- pered area, the extracted bits from a suspicious image can be further decoded and then used to roughly recover the corresponding area. We also theoretically study the image quality and bit error rate. ExperimentM results demonstrate the effectiveness of the proposed scheme.