A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed mode...A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.展开更多
S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameter...S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.展开更多
Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the softw...Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.展开更多
Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods a...Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods are mostly used in previous aeroservoelastic studies.However,series of assumptions and simplification on structures,aerodynamics and flight control systems are unavoidably introduced,and various nonlinear factors are also ignored,therefore,they result in considerable errors.A novel method called aeroservoelasticity semi-physical simulation test is proposed in this paper,which takes the flexible missile with control system as the test object.Vibration signals at several locations of the missile are measured by accelerometers,then corresponding unsteady aerodynamics is computed based on the fact that airflow at high Mach is nearly quasi-steady,and finally unsteady aerodynamics is exerted simultaneously by shakers at certain locations of the missile.The aeroservoelasticity semi-physical simulation test system can be constructed after the control system is closed.Open loop transfer function test and closed loop stability test are carried out in sequence.The test principle and method proposed in this paper are verified by the concordance between the results of numerical simulation and experiment.展开更多
This paper presents a method using range deception jamming to evaluate the safety performance of the autonomous vehicle with millimetre wave(MMW)radar.The working principle of this method is described.Combined with a ...This paper presents a method using range deception jamming to evaluate the safety performance of the autonomous vehicle with millimetre wave(MMW)radar.The working principle of this method is described.Combined with a waveform edition software,an experimental platform is developed to generate a deceptive signal that contains false distance information.According to related theories and its principle,the configuration parameters of the experimental setup are calculated and configured.The MMW radar of evaluated vehicle should identify an objective when it receives the deceptive signal from the experimental setup.Even if no obstacle,the evaluated vehicle can immediately brake in order that its braking distance is measured.The experimental results show that the proposed method can meet the requirements of the safety performance evaluation for the autonomous vehicle with MMW radar,and it also overcomes some deficiencies of previous methods.展开更多
The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation ...The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.展开更多
A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis...A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis on the system are implemented in order to study the relationships among the characteristics, parameters and working points of the system. The experimental investigations on the system characteristics are presented with the adoption ofa fuzzy-PID controller. The simulation and experimental results indicate that the pressure and vacuum continuous control system based on hybrid pump has good dynamic and static performance, strong robustness and satisfactory adaptability to various system parameters. According to the results, system can successfully gain high accuracy and fast response signal. Also, the mathematical model of system is also testified by the experimental results.展开更多
This paper investigates fault tolerant attitude control theory and experiment for underactuated spacecraft with one reaction wheel completely broken and two others suffering actuator faults of partial loss of effectiv...This paper investigates fault tolerant attitude control theory and experiment for underactuated spacecraft with one reaction wheel completely broken and two others suffering actuator faults of partial loss of effectiveness or bias.A non-smooth robust adaptive fault tolerant control law is proposed under the zero-momentum and input saturation conditions.It shows that the available reaction wheels need to produce sufficient control torque for the fault tolerance.Such a new control method is implemented in a semi-physical simulation system of an air-bearing platform.Experimental results show the effectiveness of the proposed method in spacecraft practical engineering.展开更多
This work proposes a soft sensor based on a phenomenological model for online estimation of the density and viscosity of a slurry flowing through a pipe-and-fittings assembly(PFA). The model is developed considering t...This work proposes a soft sensor based on a phenomenological model for online estimation of the density and viscosity of a slurry flowing through a pipe-and-fittings assembly(PFA). The model is developed considering the conservation principle applied to mass and momentum transfer and considering frictional energy losses to include the variables directly affecting slurry properties. A reported proposal for state observers with unknown inputs is used to develop the first block of the observer structure. The second block is constructed with two options for evaluating slurry viscosity, generating two possible estimator structures, which are tested using real data. A comparison between them indicates different uses and capabilities according to available process information.展开更多
基金This work was supported by the Project funded by China Postdoctoral Science Foundation under Grant 2019M651081the Merit Funding for the Returned Overseas Personnel Sci-Tech Activities of Shanxi Province under Grant 2016 and Key Research and Development Program of Shanxi(2019)and Innovation Programs of Higher Education Institutions in Shanxi(2019L0305).
文摘A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.
基金Supported by the 863 Project under Grant No.2008AA092301the Fundamental Research Foundation of Harbin Engineering University under Grant No.2007001
文摘S surface controllers have been proven to provide effective motion control for an autonomous underwater vehicle (AUV).However, it is difficult to adjust their control parameters manually.Choosing the optimum parameters for the controller of a particular AUV is a significant challenge.To automate the process, a modified particle swarm optimization (MPSO) algorithm was proposed.It was based on immune theory, and used a nonlinear regression strategy for inertia weight to optimize AUV control parameters.A semi-physical simulation system for the AUV was developed as a platform to verify the proposed control method, and its structure was considered.The simulation results indicated that the semi-physical simulation platform was helpful, the optimization algorithm has good local and global searching abilities, and the method can be reliably used for an AUV.
基金Projects(50909025,51179035) supported by the National Natural Science Foundation of ChinaProject(HEUCFZ1003) supported by the Fundamental Research Funds for Central Universities of China
文摘Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716006,10902006)
文摘Missiles may be damaged when aeroservoelastic problem occurs,which is caused by the interaction of structure flexibility and flight control system.Because of the limit of wind tunnel test condition,numerical methods are mostly used in previous aeroservoelastic studies.However,series of assumptions and simplification on structures,aerodynamics and flight control systems are unavoidably introduced,and various nonlinear factors are also ignored,therefore,they result in considerable errors.A novel method called aeroservoelasticity semi-physical simulation test is proposed in this paper,which takes the flexible missile with control system as the test object.Vibration signals at several locations of the missile are measured by accelerometers,then corresponding unsteady aerodynamics is computed based on the fact that airflow at high Mach is nearly quasi-steady,and finally unsteady aerodynamics is exerted simultaneously by shakers at certain locations of the missile.The aeroservoelasticity semi-physical simulation test system can be constructed after the control system is closed.Open loop transfer function test and closed loop stability test are carried out in sequence.The test principle and method proposed in this paper are verified by the concordance between the results of numerical simulation and experiment.
基金National Natural Science Foundation of China(No.61471289)Natural Science Foundation of Shaanxi Province of China(No.2015JM5189)。
文摘This paper presents a method using range deception jamming to evaluate the safety performance of the autonomous vehicle with millimetre wave(MMW)radar.The working principle of this method is described.Combined with a waveform edition software,an experimental platform is developed to generate a deceptive signal that contains false distance information.According to related theories and its principle,the configuration parameters of the experimental setup are calculated and configured.The MMW radar of evaluated vehicle should identify an objective when it receives the deceptive signal from the experimental setup.Even if no obstacle,the evaluated vehicle can immediately brake in order that its braking distance is measured.The experimental results show that the proposed method can meet the requirements of the safety performance evaluation for the autonomous vehicle with MMW radar,and it also overcomes some deficiencies of previous methods.
文摘The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.
基金This project is supported by National Natural Science Foundation of China (No.50675075).
文摘A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis on the system are implemented in order to study the relationships among the characteristics, parameters and working points of the system. The experimental investigations on the system characteristics are presented with the adoption ofa fuzzy-PID controller. The simulation and experimental results indicate that the pressure and vacuum continuous control system based on hybrid pump has good dynamic and static performance, strong robustness and satisfactory adaptability to various system parameters. According to the results, system can successfully gain high accuracy and fast response signal. Also, the mathematical model of system is also testified by the experimental results.
基金supported by the National Natural Science Foundation of China(Nos.62073165 and 62233009)the 111 Project,China(No.B20007).
文摘This paper investigates fault tolerant attitude control theory and experiment for underactuated spacecraft with one reaction wheel completely broken and two others suffering actuator faults of partial loss of effectiveness or bias.A non-smooth robust adaptive fault tolerant control law is proposed under the zero-momentum and input saturation conditions.It shows that the available reaction wheels need to produce sufficient control torque for the fault tolerance.Such a new control method is implemented in a semi-physical simulation system of an air-bearing platform.Experimental results show the effectiveness of the proposed method in spacecraft practical engineering.
基金Colciencias and SUMICOL(Suministros de Colombia S.A.)for their support and financing for this project
文摘This work proposes a soft sensor based on a phenomenological model for online estimation of the density and viscosity of a slurry flowing through a pipe-and-fittings assembly(PFA). The model is developed considering the conservation principle applied to mass and momentum transfer and considering frictional energy losses to include the variables directly affecting slurry properties. A reported proposal for state observers with unknown inputs is used to develop the first block of the observer structure. The second block is constructed with two options for evaluating slurry viscosity, generating two possible estimator structures, which are tested using real data. A comparison between them indicates different uses and capabilities according to available process information.