期刊文献+
共找到562篇文章
< 1 2 29 >
每页显示 20 50 100
Microstructure evolution and grain growth behavior of Ti14 alloy during semi-solid isothermal process 被引量:6
1
作者 陈永楠 魏建锋 +1 位作者 赵永庆 郑晶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1018-1022,共5页
Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the gr... Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution. 展开更多
关键词 titanium alloy Ti14 alloy semi-solid microstructure grain growth index
下载PDF
Preparation of semi-solid A356 Al-alloy slurry by introducing grain process 被引量:6
2
作者 陈正周 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1307-1312,共6页
A preparation technology of semi-solid metal slurry introducing grain process (IGP) was developed. The effects of processing parameters on the microstructures of the semi-solid A356 Al-alloy slurries were investigat... A preparation technology of semi-solid metal slurry introducing grain process (IGP) was developed. The effects of processing parameters on the microstructures of the semi-solid A356 Al-alloy slurries were investigated, and the formation mechanism and morphology controlling of the spherical primary a(A1) grains were discussed. The results show that when the preparing slurry is 4 kg, IG size is 10 mm, dosage is 3.5% and dumping temperature (DT) is 611-617 ℃, the mean diameter of the primary a(A1) grains in the semi-solid slurries can reach 40-75 μm and the shape factor can reach 0.82-0.89. When the IG size is 10 mm, DT is 613℃and dosage is 2%-4%, the mean diameter can reach 45-82 μm and the shape factors can reach 0.78-0.88. With decreasing DT or increasing dosage properly, the primary α(A1) grain morphology is better. When QR=QA and Rh=Rc, as long as the DT is suitable, excellent semi-solid slurry can be produced. As a result of the IG melting, a large amount of dendritic fragments can become the direct source of the primary a(A1) grains. Meanwhile, many undercooled areas are formed, where abundant primary α(A1) grains are multiplied by heterogeneous nucleation. 展开更多
关键词 A356 ai alloy semi-solid introducing grain primary a(A1)
下载PDF
EFFECT OF GRAIN REFINING ON PRIMARYαPHASE IN SEMI-SOLID A356 ALLOY PREPARED BY LOW SUPERHEAT POURING AND SLIGHT ELECTROMAGNETIC STIRRING 被引量:9
3
作者 Z. Liu W.M. Mao Z.D. Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第1期57-64,共8页
The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the gr... The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the grain size of the primary α phase in the slurry manufactured are researched. The results indicate that the slurry with particle-like and rosette-like primary α phases can be prepared by low superheat pouring and slight electromagnetic stirring from liquid A356 alloy grain-refined, in which the pouring temperature can be suitably raised. Compared with the A356 samples without grain refining, the grain size and particle morphology of primary α phase as well as the distribution of the grain with particle-like or rosette-like along radial in the ingot in A356 are markedly improved by grain refining. 展开更多
关键词 semi-solid Grain-refined Low superheat pouring Slight electromagnetic stirring A356 alloy AL-TI-B
下载PDF
PREPARATION OF SEMI-SOLID AISi7Mg ALLOY SLURRY 被引量:2
4
作者 Z.D. Zhao W.M. Mao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第2期139-145,共7页
In this article, semi-solid AlSiTMg alloy slurry was prepared by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the microstructure of the AISiTMg allo... In this article, semi-solid AlSiTMg alloy slurry was prepared by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the microstructure of the AISiTMg alloy slurry were studied. The results showed that the semi-solid AISiTMg alloy slurry, 127 mm in diameter, could be prepared by using the low superheat pouring and weak electromagnetic stirring technology and this new technology could save energy and make the pouring process convenient. When the liquid AISiTMg alloy was poured at 650℃ or 630℃, the solidified micrastructure of the AISiTMg alloy slurry, prepared by weak electromagnetic stirring, was remarkably improved when compared with that of the slurry prepared without stirring. The primary α-Al grains appeared rosette-like or spherical. When the pouring temperature was decreased, the shape of the primary α-Al grains gradually changed from dendritic-like grains to spherical grains. When the pouring temperature was appropriately increased, that is, raised to a certain superheat, the pouring process became easier and an ideal spherical microstructure of the AISiTMg alloy slurry, prepared by weak electromagnetic stirring, could also be obtained. In this experiment, when the stirring power was 0.36 kW, the optimized pouring temperature parameter was 630 ℃. When the AISiTMg alloy slurry was prepared by low superheat pouring and weak electromagnetic stirring, the pouring temperature was 630℃. Increasing the stirring power appropriately could gain better spherical primary α-Al grains, but if the stirring power was increased to a certain value, the shape of the primary α-Al grains did not improve further. In this experiment, the optimized stirring power parameter was 0.36 kW. 展开更多
关键词 semi-solid AlSiTMg alloy Primary α-Al Pouring temperature Weak electromagnetic stirring
下载PDF
Grain boundary characteristics and tensile properties of Ti14 alloy after semi-solid deformation 被引量:1
5
作者 Yong-nan Chen Jian-feng Wei Yong-qing Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第5期576-581,共6页
The microstructure and room-temperature tensile properties of Ti14,a new α+Ti2Cu alloy,were investigated after conventional forging at 950°C and semi-solid forging at 1000 and 1050°C,respectively.Results s... The microstructure and room-temperature tensile properties of Ti14,a new α+Ti2Cu alloy,were investigated after conventional forging at 950°C and semi-solid forging at 1000 and 1050°C,respectively.Results show that coarse grains and grain boundaries are obtained in the semi-solid alloys.The coarse grain boundaries are attributed to Ti2Cu phase precipitations occurred on the grain boundaries during the solidification.It is found that more Ti2Cu phase precipitates on the grain boundaries at a higher semi-solid forging temperature,which forms precipitated zones and coarsens the grain boundaries.Tensile tests exhibit high strength and low ductility for the semi-solid forged alloys,especially after forging at 1000°C.Fracture analysis reveals the evidence of ductile failure mechanisms for the conventional forged alloy and cleavage fracture mechanisms for the alloy after semi-solid forging at 1050°C. 展开更多
关键词 titanium alloys semi-solid forging grain boundaries tensile properties FRACTURE
下载PDF
Preparation of semi-solid 7075 aluminum alloy slurry by serpentine pouring channel 被引量:15
6
作者 朱文志 毛卫民 涂琴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期954-960,共7页
The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were i... The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains. 展开更多
关键词 7075 aluminum alloy semi-solid slurry serpentine channel primary α(Al)
下载PDF
Inhomogeneity of density and mechanical properties of A357 aluminum alloy backward extruded in semi-solid state 被引量:6
7
作者 杜之明 陈刚 +1 位作者 程远胜 谢水生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2285-2293,共9页
The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.T... The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness. 展开更多
关键词 A357 aluminum alloy INHOMOGENEITY semi-solid state backward extrusion numerical simulation
下载PDF
Microstructure and properties of electronic packaging box with high silicon aluminum-base alloy by semi-solid thixoforming 被引量:10
8
作者 贾琪瑾 刘俊友 +1 位作者 李艳霞 王文韶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期80-85,共6页
The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the b... The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the box were observed by optical microscopy and scanning electron microscopy,and the thermophysical and mechanical properties of the box were tested.The results show that there exists the segregation phenomenon between the primary Si phase and the liquid phase during thixoforming,the liquid phase flows from the box,and the primary Si phase accumulates at the bottom of the box.The volume fraction of primary Si phase decreases gradually from the bottom to the walls.Accordingly,the thermal conductivities of bottom center and walls are 107.6 and 131.5 W/(m·K),the coefficients of thermal expansion(CTE) are 7.9×10-6 and 10.6×10-6 K-1,respectively.The flexural strength increases slightly from 167 to 180 MPa.The microstructures and properties of the box show gradient distribution overall. 展开更多
关键词 high silicon aluminum-base alloy electronic packaging semi-solid thixoforming thermal conductivity coefficient of thermal expansion
下载PDF
Microstructure evolution of semi-solid 7075 Al alloy slurry during temperature homogenization treatment 被引量:7
9
作者 杨斌 毛卫民 宋晓俊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3592-3597,共6页
Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fr... Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fraction suitable for the follow-up rheocasting. The influence of cooling rate on the microstructure evolution of primary α(Al) during TH treatment was investigated. The results show that as the cooling rate of the slurry after being prepared reduces, the growth of primaryα(Al) in the slurry tends to be nearly spherical and the uniformity of the organization is also enhanced. This may be due to the fact that lower cooling rate plays an important role in achieving the uniformity of temperature and composition in the remaining liquid, which is crucial to the formation of the spherical and homogeneous microstructure. However, a too low cooling rate will lead to a significant increase in grain growth time, which makes too coarse grains and more particles coalesce, so a certain abnormal growth of grain appears and the shape factor decreases slightly. 展开更多
关键词 semi-solid slurry 7075 Al alloy MICROSTRUCTURE primaryα(Al)
下载PDF
Preparation of semi-solid A380 aluminum alloy slurry by serpentine channel 被引量:8
10
作者 刘志勇 毛卫民 +1 位作者 王伟番 郑志凯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1419-1426,共8页
The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-soli... The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the satisfactory semi-solid A380 aluminum alloy slurry could be obtained when the pouring temperature ranged from 630 to 650 °C. Under the same conditions, increasing the curve number or reducing the curve diameter of the serpentine channel would decrease the average diameter and increase the shape factor of the primary α(Al) grains. The "self-stirring" of the alloy melt in the serpentine channel was beneficial to the ripening of the dendrites and the spheroidizing of the primary α(Al) grains. 展开更多
关键词 A380 aluminum alloy semi-solid slurry serpentine channel primary α(Al)
下载PDF
Influence of serpentine channel pouring process parameters on semi-solid A356 aluminum alloy slurry 被引量:7
11
作者 陈正周 毛卫民 吴宗闯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期985-990,共6页
Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were in... Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were investigated. The experimental results show that when the channel diameter is 20 and 25 mm, respectively, and the pouring temperature is 640-680 ℃, the average diameter of primary α(Al) grains in the prepared A356 aluminum alloy slurry is 50-75 and 55-78 μm, respectively, and the average shape factor of primary α(Al) grains is 0.89-0.76 and 0.86-0.72, respectively. With the decline in the pouring temperature, the microstructure of semi-solid A356 aluminum alloy slurry is more desirable and a serpentine channel with smaller diameter is also advantageous to the microstructure imProvement. During the preparation of semi-solid A356 aluminum alloy slurry, a large number of nuclei can be produced by the chilling effect of the serpentine channel, and owing to the combined effect of the chilled nuclei separation and melt self-stirring, primary α(Al) nuclei can be multiplied and spheroidized finally. 展开更多
关键词 semi-solid A356 aluminum alloy serpentine channel primary α(Al)
下载PDF
Application of cyclic upsetting-extrusion to semi-solid processing of AZ91D magnesium alloy 被引量:3
12
作者 陶健全 姜巨福 +5 位作者 陈红 肖远伦 张荣朝 胡庆华 赵军 赵强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期909-915,共7页
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructur... The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting. 展开更多
关键词 AZ91D magnesium alloy semi-solid processing cyclic upsetting-extrusion mechanical properties MICROSTRUCTURE
下载PDF
Effects of processing parameters on microstructure of semi-solid slurry of AZ91D magnesium alloy prepared by gas bubbling 被引量:3
13
作者 张扬 吴国华 +3 位作者 刘文才 张亮 庞松 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2181-2187,共7页
The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D se... The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D semi-solid slurry was investigated.With increasing the gas flow rate from 0 to 5 L/min,the average size of primary α-Mg particles decreases from 119.1 to77.2μm and the average shape factor increases continuously from 0.1 to 0.596.The formation of non-dendritic primary α-Mg particles during gas bubbling is the result of combined effects of dendrite fragmentation and copious nucleation.With increasing the cooling rate from 3.6 to 14.6℃/min,the average particle size of primary α-Mg phase decreases from 105.0 to 68.1μm while the average shape factor peaks at 9.1℃/min.Both high and low cooling rates can induce dendritic growth of primary α-Mg particles.Changing the stirring end temperature from 590 to 595℃ has little effect on the average size and shape factor of primary α-Mg particles in AZ91 D semi-solid slurry.The insensitivity of semi-solid microstructures to the stirring end temperature is attributed to the sufficient quantity of primary particles formed in the melt. 展开更多
关键词 AZ91D magnesium alloy semi-solid slurry gas bubbling MICROSTRUCTURE
下载PDF
Grain refinement mechanism of Al-5C master alloy in AZ31 magnesium alloy 被引量:6
14
作者 张爱民 郝海 张兴国 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3167-3172,共6页
Al-5C master alloy was prepared by powder in situ synthesis process, and its effects on grain refinement of AZ31 alloy and refining mechanism were investigated. The results indicate that the AI 5C master alloy consist... Al-5C master alloy was prepared by powder in situ synthesis process, and its effects on grain refinement of AZ31 alloy and refining mechanism were investigated. The results indicate that the AI 5C master alloy consists of a(Al) and A14C3 phases, and the size distribution of Al4C3 particles is controlled by sintering time. The AI 5C master alloy can remarkably reduce the grain size of AZ31 alloy, which decreases with the increasing addition amount of AI-SC master alloy when the addition amount is below 2%. The refining mechanism is attributed to the formation of new compounds of Al-C-Mnparticles by Al4C3 and Mn, which might act as nucleating substrates for a-Mg grain. 展开更多
关键词 AZ31 magnesium alloy grain refinement ai-SC master alloy ai C Mn compounds
下载PDF
Mechanical behavior of Al-Zn-Mg-Cu alloy under tension in semi-solid state 被引量:2
15
作者 陈刚 张宇民 杜之明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期643-648,共6页
In order to study the hot fractures in relation to the semi-solid processing, the tensile tests of an extruded 7075 aluminum alloy which is based on Al?Zn?Mg?Cu system were carried out in the high temperature solid an... In order to study the hot fractures in relation to the semi-solid processing, the tensile tests of an extruded 7075 aluminum alloy which is based on Al?Zn?Mg?Cu system were carried out in the high temperature solid and semi-solid states at different strain rates. The results show that the tensile behavior can be divided into three regimes with increasing the liquid fraction. The alloy first behaves in a ductile character, and as the temperature increases, the fracture mechanism changes from ductile to brittle which is determined by both of liquid and solid, and lastly the fracture mechanism is brittle which is totally dominated by liquid. At strain rates of 1×10?4, 1×10?3 and 1×10?2 s?1, the brittle temperature ranges are 515?526, 519?550 and 540?580 °C, respectively. Two equations which are critical for tensile behavior are proposed. 展开更多
关键词 Al-Zn-Mg-Cu alloy mechanical behavior semi-solid processing FRACTURE
下载PDF
Tensile properties and microstructure of Ti14 alloy after semi-solid forging 被引量:1
16
作者 陈永楠 魏建锋 +1 位作者 赵永庆 张学敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2610-2616,共7页
Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reve... Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reveal that high strength and low ductility are obtained in all semi-solid forged alloys. Tensile properties decrease as the semi-solid forging temperature increases, and cleavage fractures are observed after semi-solid forging at 1 050 °C. The variations in tensile properties are attributed to the coarse microstructures obtained in the semi-solid alloys. It is found that the elevated semi-solid temperatures lead to more liquid precipitates along the prior grain boundaries, which increases the peritectic precipitation and formation of Ti2Cu precipitation zones during re-solidification. Recrystallization heat treatment leads to fine microstructure of semi-solid forged alloys, resulting in improvement of tensile properties. 展开更多
关键词 Ti14 alloy semi-solid forging MICROSTRUCTURE tensile properties heat treatment
下载PDF
Microstructure evolution of hot pressed AZ91D alloy chips reheated to semi-solid state
17
作者 许红雨 吉泽升 +1 位作者 胡茂良 王振宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2906-2912,共7页
AZ91D magnesium alloy chips, which were directly collected on the spot of machining process, were recycled to prepare billet via hot pressing for semi-solid processing. The semi-solid microstructure evolution of the b... AZ91D magnesium alloy chips, which were directly collected on the spot of machining process, were recycled to prepare billet via hot pressing for semi-solid processing. The semi-solid microstructure evolution of the billet during reheating was investigated. The results indicate that there are three stages during reheating to semi-solid state: the dissolution of Mg17Al12 and diffusion of Al into α-Mg matrix, the melting of the region with high content of solute and formation of isolated solid particles, and spheroidization and growth of solid particles. Meanwhile, a number of entrapped liquid droplets form within solid particles. In addition, the number and size of entrapped liquid droplets rely on the holding time in the semi-solid temperature range. With increasing isothermal holding time, the solid fraction remains unchanged when the solid-liquid system reaches the dynamic equilibrium at last, while the solid particles become more globular and the average size of solid particles increases owing to the decreasing of interfacial energy and the effect of interfacial tension. 展开更多
关键词 AZ91D alloy CHIPS semi-solid microstructure microstructure evolution RECYCLING entrapped liquid droplet interfacial energy interfacial tension
下载PDF
Microstructure evolution and mechanical properties of ZK60 magnesium alloy produced by SSTT and RAP route in semi-solid state
18
作者 王长朋 张营营 +3 位作者 李迪凡 梅华生 张帷 刘杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3621-3628,共8页
The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studie... The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studied, respectively. The microstructure evolution during partial remelting was studied at different temperatures for different time. The tensile mechanical properties of thixoformed components by the two routes at room temperature were examined. The results show that coalescence is dominant in the SSTT alloy and Ostwald ripening is dominant in the RAP alloy. Compared with the SSTT route, the RAP route can produce finer semi-solid microstructure under the similar isothermal holding condition. The microstructure of the RAP alloy is much more spheroidized compared with the SSTT alloy. Thixoforming for the ZK60 magnesium alloy produced by the SSTT and RAP route results in successful filling of the die, and the thixoforming process improves the mechanical properties of ZK60 magnesium alloy. The RAP alloy shows significantly advantageous mechanical properties over that of the SSTT alloy. 展开更多
关键词 ZK60 magnesium alloy semi-solid thermal transformation (SSTT) recrystallization and partial melting (RAP) route microstructure evolution mechanical properties
下载PDF
Preparation of semi-solid ZL101 aluminum alloy slurry by serpentine channel 被引量:4
19
作者 程书建 赵宇宏 +2 位作者 侯华 靳玉春 郭晓晓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1820-1825,共6页
Semi-solid slurry of ZL101 aluminum alloy was prepared using serpentine channel. The influences of the pouring temperature, the number of curves and the serpentine channel temperature on the microstructure of semi-sol... Semi-solid slurry of ZL101 aluminum alloy was prepared using serpentine channel. The influences of the pouring temperature, the number of curves and the serpentine channel temperature on the microstructure of semi-solid ZL101 aluminum alloy were investigated. The results show that, satisfied semi-solid slurry of ZL101 aluminum alloy was prepared with pouring at 630-680℃. The morphology of primaryα(Al) grains transforms from rosette to spheroid with the decrease of pouring temperature. At the same pouring temperature, increasing the number of curves can improve the morphology of primaryα(Al) grains and decrease the grain size. Qualified slurry can be attained with lowering the pouring temperature when the serpentine channel temperature is higher. The alloy melt has the effect of“self-stirring”in the serpentine channel, which can make the primary nuclei gradually evolve into spherical and near-spherical grains. 展开更多
关键词 ZL101 aluminum alloy semi-solid SLURRY serpentine channel
下载PDF
Research on semi-solid slurry of a hypoeutectic Al-Si alloy prepared by low superheat pouring and weak electromagnetic stirring 被引量:21
20
作者 LIU Zheng MAO Weiming ZHAO Zhengduo 《Rare Metals》 SCIE EI CAS CSCD 2006年第2期177-183,共7页
The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were inve... The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring. 展开更多
关键词 semi-solid low superheat pouring weak electromagnetic stirring hypoeutectic Al-Si alloy A356 Al alloy
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部