期刊文献+
共找到51,837篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient slope reliability and sensitivity analysis using quantile-based first-order second-moment method 被引量:1
1
作者 Zhiyong Yang Chengchuan Yin +2 位作者 Xueyou Li Shuihua Jiang Dianqing Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4192-4203,共12页
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are... This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis. 展开更多
关键词 slope reliability sensitivity analysis QUANTILE First-order second-moment method(FOSM) First-order reliability method(FORM)
下载PDF
Numerical analysis of downward progressive landslides in long natural slopes with sensitive clay 被引量:1
2
作者 Yujia Zhang Xue Zhang +2 位作者 Xifan Li Aindra Lingden Jingjing Meng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3937-3950,共14页
Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assess... Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression. 展开更多
关键词 sensitive clay landslides Long natural slopes Translational progressive failure Flow slides Spread Nodal integration-based particle finite element method(N-PFEM)
下载PDF
Effects of spatial heterogeneity on pseudo-static stability of coal mine overburden dump slope,using random limit equilibrium and random finite element methods:A comparative study
3
作者 Madhumita Mohanty Rajib Sarkar Sarat Kumar Das 《Earthquake Engineering and Engineering Vibration》 2025年第1期83-99,共17页
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate... Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1. 展开更多
关键词 coal mine overburden dump slope random limit equilibrium method random finite element method seismic slope stability spatial heterogeneity
下载PDF
IN-PLANE INSENSITIVE DOUBLE-APERTURE DIGITAL SHEAROGRAPHY FOR SLOPE MEASUREMENT
4
作者 顾国庆 王开福 +2 位作者 张成斌 许星 梁智锦 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第4期367-372,共6页
An improved in-plane insensitive double-aperture digital speckle shearing interferometric technique is proposed to measure the first derivative of out-of-plane displacement (slope). The temporal phase-shifting metho... An improved in-plane insensitive double-aperture digital speckle shearing interferometric technique is proposed to measure the first derivative of out-of-plane displacement (slope). The temporal phase-shifting method is used for the quantitative analysis of fringes. The designed system employs a double-aperture arrange- ment placed in front of the imaging lens. A glass wedge covers one of the two apertures to introduce a laterally shear. The experimental specimen is a circular aluminum plate, clamped along its edge and subjected to both out- of-plane deflection and in-plane rotation. Experimental results show that the fringes obtained from the proposed optical configuration represent pure slope contour distributions, and that the contributions from the in-plane dis- placement components are completely eliminated. Theoretical and experimental results are in good agreement. 展开更多
关键词 digital shearography slope temporal phase-shifting double-aperture
下载PDF
Mechanical response of bridge piles in high-steep slopes and sensitivity study 被引量:11
5
作者 赵衡 尹平保 李夕兵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4043-4048,共6页
The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, ... The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, the mechanical model of piles-soils-slopes system was established, and the equilibrium differential equations of pile were derived. Moreover, an analytic solution for identifying the model parameters was provided by means of power series method. A project with field measurement was compared with the proposed method. It is indicated that the lateral loads have great influences on the pile, the steep slope effect is indispensable, and reasonable diameter of the pile could enhance the bending ability. The internal force and displacements of pile are largely based upon the horizontal loads applied on pile, especially in upper part. 展开更多
关键词 BRIDGE mechanical response high-steep slope inclined load power series method
下载PDF
Monitoring the Cultivated Slope Land in the Three Gorges Reservoir Area Based on Remote Sensing and GIS 被引量:4
6
作者 ZHOU Jieming1, ZHOU Qigang 2, 3 ,HUANG Zhiqin 2, 3, 4 1. The Faculty of Geography and Resources Science, Sichuan Normal University, Chengdu 610066, Sichuan, China 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China +1 位作者 3. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China 4. Information Center of Land and Resources Department of Sichuan Province, Chengdu 610041, Sichuan, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期915-921,共7页
By means of combining auto-extraction with manual interpretation, the current distribution information about cultivated land is obtained. The distribution information of 1992 is extracted from the dynamic polygons of ... By means of combining auto-extraction with manual interpretation, the current distribution information about cultivated land is obtained. The distribution information of 1992 is extracted from the dynamic polygons of 2002. The monitoring mini-system of the cultivated slope land is established. In the system, detailed surveys, focused on the resources of cultivated slope land, are carried out. The results indicate that the area of the cultivated slope land is very large. Meanwhile, there are lots of cultivated steep slopes with gradient above 35°. The areas of steep land cultivated had been slowly reduced from 1992 to 2002. At the same time, the pressures of returning farm land to forestry are great in all counties. The conflicts between population growth, insufficient grain supply and stagnant economic development sharpen increasingly. It is inevitable to improve the agricultural structure. 展开更多
关键词 slope land cultivated remote sensing geography information system (GIS) the pressure of returning farm land to forestry Three Gorges Reservoir Area
下载PDF
Sensitivity analysis for parameters of a monitoring system for steep slopes of open-pit mines 被引量:4
7
作者 HAN Xue HE Man-chao ZHANG Bi 《Mining Science and Technology》 EI CAS 2009年第4期441-445,共5页
Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitori... Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines. 展开更多
关键词 open-pit mine steep slope monitoring system setting parameter analysis
下载PDF
Reliability analysis of slopes considering spatial variability of soil properties based on efficiently identified representative slip surfaces 被引量:16
8
作者 Bin Wang Leilei Liu +1 位作者 Yuehua Li Quan Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期642-655,共14页
Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper propose... Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper proposes an effective method for identification of representative slip surfaces(RSSs)of slopes with spatially varied soils within the framework of limit equilibrium method(LEM),which utilizes an adaptive K-means clustering approach.Then,an improved slope reliability analysis based on the RSSs and RSM considering soil spatial variability,in perspective of computation efficiency,is established.The detailed implementation procedure of the proposed method is well documented,and the ability of the method in identifying RSSs and estimating reliability is investigated via three slope examples.Results show that the proposed method can automatically identify the RSSs of slope with only one evaluation of the conventional deterministic slope stability model.The RSSs are invariant with the statistics of soil properties,which allows parametric studies that are often required in slope reliability analysis to be efficiently achieved with ease.It is also found that the proposed method provides comparable values of factor of safety(FS)and probability of failure(Pf)of slopes with those obtained from direct analysis and lite rature. 展开更多
关键词 slope reliability analysis Spatial variability Representative slip surfaces(RSSs) Response surface method(RSM) Random field simulation
下载PDF
Stability analysis of a slope containing water-sensitive mudstone considering different rainfall conditions at an open-pit mine 被引量:2
9
作者 Guoyu Yang Yanlong Chen +3 位作者 Xuanyu Liu Ri Yang Yafei Zhang Jialong Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期233-253,共21页
Mudstone, as a typical soft rock with wide distribution, has been endangering the slopes containing mudstone by its watersensitivity of swelling and weakening strength when encountering water. To comprehensively under... Mudstone, as a typical soft rock with wide distribution, has been endangering the slopes containing mudstone by its watersensitivity of swelling and weakening strength when encountering water. To comprehensively understand the water-sensitivity of mudstone and reveal its infuence on slope stability, we took the working slope containing water-sensitive mudstone of Shengli No.1 open-pit coal mine in Xilinhot, Inner Mongolia, China, as an example. Mudstone samples taken from the working slope were remodeled and saturated, and then triaxial tested to obtain the efective cohesion and efective internal friction angle. The flter paper method was used to obtain the soil–water characteristic curve of unsaturated mudstone. The pore structure of mudstone samples with diferent water contents were analyzed using the mercury intrusion porosimetry tests combined with the fractal dimension. The total pore content of the mudstone sample with lower water content is greater than that of the mudstone sample with higher water content. The mesopores are more in the mudstone sample with lower water content, while the small pores are more in the mudstone sample with higher water content. The variation of water content will change the complexity of mudstone pore structure. The higher the water content, the simpler the mudstone pore structure and the smoother the pore surface. Numerical calculations were conducted on the stability of the working slope under diferent rainfall conditions. The efective saturation on the mudstone layer surface changed and the plastic strain all occurred on the mudstone steps under diferent rainfall conditions. The key to preventing landslide of the slope containing water-sensitive mudstone in Shengli No.1 open-pit coal mine is to control the deformation and sliding of the mudstone layer. 展开更多
关键词 Water-sensitivity SWCC Pore structure Rainfall infltration slope stability
下载PDF
Multi-factor sensitivity analysis of shallow unsaturated clay slope stability 被引量:1
10
作者 ZhuoyingTan MeifengCai 《Journal of University of Science and Technology Beijing》 CSCD 2005年第3期193-202,共10页
An unsaturated clay slope, with various sloping angles and a thickness of 14 m, consists of backfill, slope soil and residual soil. Slide interfaces were determined by geophysical approaches and the original slope was... An unsaturated clay slope, with various sloping angles and a thickness of 14 m, consists of backfill, slope soil and residual soil. Slide interfaces were determined by geophysical approaches and the original slope was reconstructed. Sub-slope masses were classified based on the varieties of sloping angle. A force recursive principle was proposed to calculate the stability coefficient of the sub-slope masses. The influencing factors such as sloping angle, water content, hydrostatic pressure, seismic force as well as train load were analyzed. The range and correlation of the above-mentioned factors were discussed and coupled wave equations were established to reflect the relationships between unit weight, cohesion, internal frictional angle, and water content, as well as between internal frictional angle and cohesion. The sensitivity analysis of slope stability was carried out and susceptive factors were determined when the factors were taken as independent and dependent variables respectively. The results show that sloping angle, water content and earthquake are the principal susceptive factors influencing slope stability. The impact of hydrostatic pressure on slope stability is similar to the seismic force in quantity. Train load plays a small role in slope stability and its influencing only reaches the roadbed and its neighboring slope segment. If the factors are taken as independent variables, the influencing extent of water content and cohesion on slope stability can be weakened and train load can be magnified. 展开更多
关键词 unsaturated clay slope stability multi-factor sensitivity analysis
下载PDF
Multi-factor sensitivity analysis on the stability of submarine hydrate-bearing slope 被引量:12
11
作者 Liang Kong Zhen-fei Zhang +3 位作者 Qing-meng Yuan Qian-yong Liang Yao-hong Shi Jin-qing Lin 《China Geology》 2018年第3期367-373,共7页
There are many factors affecting the instability of the submarine hydrate-bearing slope (SHBS),and the interaction with hydrate is very complicated.In this paper,the mechanical mechanism of the static liquefaction and... There are many factors affecting the instability of the submarine hydrate-bearing slope (SHBS),and the interaction with hydrate is very complicated.In this paper,the mechanical mechanism of the static liquefaction and instability of submarine slope caused by the dissociation of natural gas hydrate (NGH) resulting in the rapid increase of pore pressure of gas hydrate-bearing sediments (GHBS) and the decrease of effective stress are analyzed based on the time series and type of SHBS.Then,taking the typical submarine slope in the northern South China Sea as an example,four important factors affecting the stability of SHBS are selected,such as the degree of hydrate dissociation,the depth of hydrate burial,the thickness of hydrate,and the depth of seawater.According to the principle of orthogonal method,25 orthogonal test schemes with 4 factors and 5 levels are designed and the safety factors of submarine slope stability of each scheme are calculated by using the strength reduction finite element method.By means of the orthogonal design range analysis and the variance analysis,sensitivity of influential factors on stability of SHBS are obtained.The results show that the degree of hydrate dissociation is the most sensitive,followed by hydrate burial depth,the thickness of hydrate and the depth of seawater.Finally,the concept of gas hydrate critical burial depth is put forward according to the influence law of gas hydrate burial depth,and the numerical simulation for specific submarine slope is carried out,which indicates the existence of critical burial depth. 展开更多
关键词 SUBMARINE slope Gas HYDRATE Strength reduction finite element method Instability mechanism sensitivity analysis Critical BURIAL depth
下载PDF
Applications of state estimation in multi-sensor information fusion for the monitoring of open pit mine slope deformation 被引量:1
12
作者 付华 刘银平 肖健 《Journal of Coal Science & Engineering(China)》 2008年第2期317-320,共4页
The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monito... The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes. 展开更多
关键词 multi-sensor information fusion the side slope distortion the state estimation Klman filter algorithm
下载PDF
Investigation of the block toppling evolution of a layered model slope by centrifuge test and discrete element modeling 被引量:2
13
作者 Leilei Jin Hongkai Dong +3 位作者 Fei Ye Yufeng Wei Jianfeng Liu Changkui Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期112-122,共11页
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl... Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe. 展开更多
关键词 Block toppling CENTRIFUGE Anti-dip slope Failure mechanism Discrete element method
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas 被引量:2
14
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis slope stability Himalayan road Static and dynamic conditions
下载PDF
Effect of slope angle on fractured rock masses under combined influence of variable rainfall infiltration and excavation unloading 被引量:2
15
作者 Xiaoshuang Li Qihang Li +3 位作者 Yunmin Wang Wei Liu Di Hou Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4154-4176,共23页
Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research w... Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies. 展开更多
关键词 Open-pit to underground excavation Rainfall infiltration Similarity simulation Numerical simulation Image recognition slope angle
下载PDF
Uphill or downhill?Cropland use change and its drivers from the perspective of slope spectrum 被引量:2
16
作者 PAN Sipei LIANG Jiale +1 位作者 CHEN Wanxu PENG Yelin 《Journal of Mountain Science》 SCIE CSCD 2024年第2期484-499,共16页
The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphi... The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale. 展开更多
关键词 Cropland climbing Land use change slope spectrum Driving factors Geographically weighted regression Yangtze River Basin
下载PDF
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:2
17
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 Unmanned aerial vehicle(UAV) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake 被引量:1
18
作者 WANG Tong LIU Xianfeng +5 位作者 HOU Zhaoxu XU Jiahang ZHANG Jun YUAN Shengyang JIANG Guanlu HU Jinshan 《Journal of Mountain Science》 SCIE CSCD 2024年第3期882-900,共19页
Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the d... Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes. 展开更多
关键词 Seismic behavior Horizontal layered Weathered rock slope Shaking table test Failure mode
下载PDF
Probabilistic back-analysis of rainfall-induced landslides for slope reliability prediction with multi-source information 被引量:1
19
作者 Shui-Hua Jiang Hong-Hu Jie +2 位作者 Jiawei Xie Jinsong Huang Chuang-Bing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3575-3594,共20页
Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(includi... Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(including test data,monitored data,field observation and slope survival records)is rarely used in current probabilistic back-analysis.Conducting the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating multi-source information is a challenging task since thousands of random variables and high-dimensional likelihood function are usually involved.In this paper,a framework by integrating a modified Bayesian Updating with Subset simulation(mBUS)method with adaptive Conditional Sampling(aCS)algorithm is established for the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction.Within this framework,the high-dimensional probabilistic back-analysis problem can be easily tackled,and the multi-source information(e.g.monitored pressure heads and slope survival records)can be fully used in the back-analysis.A real Taoyuan landslide case in Taiwan,China is investigated to illustrate the effectiveness and performance of the established framework.The findings show that the posterior knowledge of soil parameters obtained from the established framework is in good agreement with the field observations.Furthermore,the updated knowledge of soil parameters can be utilized to reliably predict the occurrence probability of a landslide caused by the heavy rainfall event on September 12,2004 or forecast the potential landslides under future rainfalls in the Fuhsing District of Taoyuan City,Taiwan,China. 展开更多
关键词 Rainfall-induced landslide Spatial variability Probabilistic back-analysis slope reliability analysis Bayesian updating
下载PDF
Three-dimensional stability calculation method for high and large composite slopes formed by mining stope and inner dump in adjacent open pits 被引量:1
20
作者 Zuchao Liang Dong Wang +4 位作者 Guanghe Li Guangyu Sun Mingyu Yu Dong Xia Chunjian Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期507-520,共14页
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi... The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis. 展开更多
关键词 Composite slope Destabilization mechanism 3D mechanical effect Three-dimensional stability Coordinated development distance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部