期刊文献+
共找到4,679篇文章
< 1 2 234 >
每页显示 20 50 100
蒜芥茄SsFLS2基因的克隆及其表达分析
1
作者 孙茂 吴丽艳 +4 位作者 龚亚菊 鲍锐 桂敏 黎志彬 杜光辉 《西南农业学报》 CSCD 北大核心 2024年第8期1669-1676,共8页
【目的】克隆云南野生蒜芥茄(Solanum sisymbriifolium Lam.)中的FLS2基因,并对其编码蛋白的理化性质、亚细胞定位、系统进化以及表达情况予以分析,初步探究野茄FLS2基因在黄萎病胁迫下的生物学功能。【方法】基于前期所测转录组数据(... 【目的】克隆云南野生蒜芥茄(Solanum sisymbriifolium Lam.)中的FLS2基因,并对其编码蛋白的理化性质、亚细胞定位、系统进化以及表达情况予以分析,初步探究野茄FLS2基因在黄萎病胁迫下的生物学功能。【方法】基于前期所测转录组数据(蒜芥茄接种黄萎病病原菌),克隆获取蒜芥茄FLS2基因,命名为SsFLS2;利用生物信息学分析软件对SsFLS2基因的理化性质进行分析,并通过实时荧光定量PCR(Real-time fluorescence quantitative PCR,RT-qPCR)检测其在蒜芥茄根、茎、叶的表达以及在接种黄萎病病原菌后不同时间的表达情况。【结果】蒜芥茄SsFLS2基因全长3655 bp,具有完整的ORF框,编码1126个氨基酸。其编码蛋白的分子式为C_(5596)H_(8814)N_(1494)O_(1627)S_(4),理论分子量为124.34 kD,理论等电点(pI)为7.33,总平均亲水性系数为0.081。该蛋白二级结构主要由42.81%的无规则卷曲、40.23%的α-螺旋、13.23%的延伸链以及3.73%的β-折叠组成,且存在跨膜结构,定位于细胞膜上,其中可被磷酸化且超过阈值线的位点,共计151个。SsFLS2蛋白的氨基酸序列与马铃薯(Solanum tuberosum)同源蛋白(XP 006358149.2)的关系最近。RT-qPCR检测发现,在蒜芥茄根、茎、叶中均有SsFLS2基因的表达,且根、叶中的相对表达量极显著高于茎部;接种黄萎病病原菌后72 h内,处理组和对照组均在24 h时,SsFLS2基因的相对表达量大幅度增加且极显著高于其他时间点。【结论】本研究成功克隆蒜芥茄的SsFLS2基因,并对其编码蛋白的理化性质及基因表达情况等进行分析。结果表明,SsFLS2是蒜芥茄响应黄萎病胁迫的重要基因,结果可为进一步研究该基因在蒜芥茄黄萎病抗性中的功能奠定基础。 展开更多
关键词 蒜芥茄 Flagellin sensing 2(FLS2) 基因克隆 生物信息学 基因表达
下载PDF
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency 被引量:2
2
作者 Yahui Liu Shunda Qiao +4 位作者 Chao Fang Ying He Haiyue Sun Jian Liu Yufei Ma 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第3期26-34,共9页
A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu... A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF. 展开更多
关键词 light-induced thermoelectric spectroscopy quartz tuning fork multi-pass cell gas sensing
下载PDF
一种小型化人工表面等离激元传感系统——实现自适应和高灵敏的气体检测 被引量:1
3
作者 Xuanru Zhang Jia Wen Zhu Tie Jun Cui 《Engineering》 SCIE EI CAS CSCD 2024年第4期86-94,共9页
Resonantly enhanced dielectric sensing has superior sensitivity and accuracy because the signal is measured from relative resonance shifts that are immune to signal fluctuations.For applications in the Internet of Thi... Resonantly enhanced dielectric sensing has superior sensitivity and accuracy because the signal is measured from relative resonance shifts that are immune to signal fluctuations.For applications in the Internet of Things(IoT),accurate detection of resonance frequency shifts using a compact circuit is in high demand.We proposed an ultracompact integrated sensing system that merges a spoof surface plasmon resonance sensor with signal detection,processing,and wireless communication.A softwaredefined scheme was developed to track the resonance shift,which minimized the hardware circuit and made the detection adaptive to the target resonance.A microwave spoof surface plasmon resonator was designed to enhance sensitivity and resonance intensity.The integrated sensing system was constructed on a printed circuit board with dimensions of 1.8 cm×1.2 cm and connected to a smartphone wirelessly through Bluetooth,working in both frequency scanning mode and resonance tracking mode and achieving a signal-to-noise ratio of 69 dB in acetone vapor sensing.This study provides an ultracompact,accurate,adaptive,sensitive,and wireless solution for resonant sensors in the IoT. 展开更多
关键词 Spoof surface plasmons Internet of Things Integrated sensing Resonance tracking Microwave sensing
下载PDF
Tailoring MXene Thickness and Functionalization for Enhanced Room‑Temperature Trace NO_(2) Sensing 被引量:2
4
作者 Muhammad Hilal Woochul Yang +1 位作者 Yongha Hwang Wanfeng Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期71-86,共16页
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method... In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies. 展开更多
关键词 Controlled MXene thickness Gaseous functionalization approach Lower electronegativity functional groups Enhanced MXene stability Trace NO_(2)sensing
下载PDF
Remote sensing of air pollution incorporating integrated-path differential-absorption and coherent-Doppler lidar 被引量:1
5
作者 Ze-hou Yang Yong Chen +5 位作者 Chun-li Chen Yong-ke Zhang Ji-hui Dong Tao Peng Xiao-feng Li Ding-fu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期594-601,共8页
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l... An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety. 展开更多
关键词 Differential absorption LIDAR COHERENT Doppler lidar Remoting sensing Atmospheric pollution
下载PDF
ZnSb/Ti_(3)C_(2)T_(x)MXene van der Waals heterojunction for flexible near-infrared photodetector arrays 被引量:2
6
作者 Chuqiao Hu Ruiqing Chai +2 位作者 Zhongming Wei La Li Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期99-105,共7页
Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene base... Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application. 展开更多
关键词 ZnSb nanoplates Ti_(3)C_(2)T_(x)MXene van der Waals heterojunction flexible photodetector image sensing
下载PDF
多功能热电织物用于可穿戴无线传感系统 被引量:1
7
作者 Xinyang He Jiaxin Cai +6 位作者 Mingyuan Liu Xuepeng Ni Wendi Liu Hanyu Guo Jianyong Yu Liming Wang Xiaohong Qin 《Engineering》 SCIE EI CAS CSCD 2024年第4期158-167,共10页
Flexible thermoelectric materials play an important role in smart wearables,such as wearable power generation,self-powered sensing,and personal thermal management.However,with the rapid development of Internet of Thin... Flexible thermoelectric materials play an important role in smart wearables,such as wearable power generation,self-powered sensing,and personal thermal management.However,with the rapid development of Internet of Things(IoT)and artificial intelligence(AI),higher standards for comfort,multifunctionality,and sustainable operation of wearable electronics have been proposed,and it remains challenging to meet all the requirements of currently reported thermoelectric devices.Herein,we present a multifunctional,wearable,and wireless sensing system based on a thermoelectric knitted fabric with over 600 mm·s^(-1)air permeability and a stretchability of 120%.The device coupled with a wireless transmission system realizes self-powered monitoring of human respiration through an mobile phone application(APP).Furthermore,an integrated thermoelectric system was designed to combine photothermal conversion and passive radiative cooling,enabling the characteristics of being powered by solar-driven in-plane temperature differences and monitoring outdoor sunlight intensity through the APP.Additionally,we decoupled the complex signals of resistance and thermal voltage during deformation under solar irradiation based on the anisotropy of the knitted fabrics to enable the device to monitor and optimize the outdoor physical activity of the athlete via the APP.This novel thermoelectric fabricbased wearable and wireless sensing platform has promising applications in next-generation smart textiles. 展开更多
关键词 Thermoelectric fabrics Wearable device WIRELESS Multifunctional sensing system Outdoor wearable signal monitoring
下载PDF
Building Feedback-Regulation System Through Atomic Design for Highly Active SO_(2)Sensing 被引量:1
8
作者 Xin Jia Panzhe Qiao +8 位作者 Xiaowu Wang Muyu Yan Yang Chen Bao-Li An Pengfei Hu Bo Lu Jing Xu Zhenggang Xue Jiaqiang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期343-357,共15页
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between sing... Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors. 展开更多
关键词 Feedback-regulation system Atomic interface SO_(2)sensor Single-atom sensing mechanism Intelligent-sensing array
下载PDF
Sparse Modal Decomposition Method Addressing Underdetermined Vortex-Induced Vibration Reconstruction Problem for Marine Risers 被引量:1
9
作者 DU Zun-feng ZHU Hai-ming YU Jian-xing 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期285-296,共12页
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa... When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring. 展开更多
关键词 motion reconstruction vortex-induced vibration(VIV) marine riser modal decomposition method compressed sensing
下载PDF
Variation in the surface heat flux on the north and south slopes of Mount Qomolangma 被引量:1
10
作者 Yonghao Jiang Maoshan Li +4 位作者 Yuchen Liu Ting Wang Pei Xu Yaoming Ma Fanglin Sun 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期28-33,共6页
The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of t... The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope. 展开更多
关键词 Mount Qomolangma TESEBS model Remote sensing retrieval Surface heat fluxes
下载PDF
Metabolic and proteostatic differences in quiescent and active neural stem cells 被引量:1
11
作者 Jiacheng Yu Gang Chen +4 位作者 Hua Zhu Yi Zhong Zhenxing Yang Zhihong Jian Xiaoxing Xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期43-48,共6页
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerati... Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms. 展开更多
关键词 adult neurogenesis cell metabolic pathway cellular proliferation neural stem cell niches neural stem cells neuronal differentiation nutrient sensing pathway PROTEOSTASIS
下载PDF
Sestrin1参与调控小鼠肝脏细胞糖异生
12
作者 郭艳芳 耿超 +4 位作者 解相宏 陈恩惠 郭泽宇 张明龙 刘晓军 《基础医学与临床》 2024年第2期141-146,共6页
目的研究应激诱导蛋白1(SESN1)在小鼠肝脏糖异生途径中的作用及调节机制。方法RT-qPCR检测SESN1在C57BL/6J小鼠禁食条件下肝脏组织以及用佛司可林(Fsk)与地塞米松(Dex)处理的原代肝细胞中的mRNA表达水平。通过质粒转染HepG2细胞,RT-qPC... 目的研究应激诱导蛋白1(SESN1)在小鼠肝脏糖异生途径中的作用及调节机制。方法RT-qPCR检测SESN1在C57BL/6J小鼠禁食条件下肝脏组织以及用佛司可林(Fsk)与地塞米松(Dex)处理的原代肝细胞中的mRNA表达水平。通过质粒转染HepG2细胞,RT-qPCR检测SESN1过表达对糖异生相关基因PGC-1α,PEPCK,G6Pase的mRNA表达水平的影响。利用双荧光素酶报告系统研究SESN1在HepG2细胞中对PGC-1α的启动子活性的影响。在HepG2细胞中,通过过表达SESN1同时抑制SIRT1表达检测SESN1对PGC-1α去乙酰化状态的影响;通过敲低SIRT1表达检测其是否介导了SESN1诱导糖异生相关基因mRNA水平的变化。结果SESN1在饥饿的C57BL/6J小鼠肝脏组织和佛司可林(Fsk)和地塞米松(Dex)处理的原代肝细胞中的mRNA表达水平显著升高(P<0.001)。在HepG2细胞中过表达SESN1促进了PGC-1α,PEPCK,G6Pase的mRNA表达水平(P<0.001)并促进PGC-1α的启动子活性(P<0.001)。SESN1的过表达降低了原代肝细胞中PGC-1α的乙酰化水平,利用Sirt家族抑制剂NAM和shRNA腺病毒分别干扰SIRT1表达,均拮抗了SESN1对PGC-1α的去乙酰化作,同时SIRT1诱导的PGC-1α,PEPCK和G6Pase的表达也明显受损(P<0.0001)。结论SESN1参与调控小鼠肝脏细胞糖异生,可能依赖于SIRT1。 展开更多
关键词 肝脏糖异生 应激诱导蛋白1(SENS1) 沉默信息调节蛋白1(SIRT1) 过氧化物酶体增殖物激活受体γ共激活因子1α(PGC-1α)
下载PDF
Preparation of single atom catalysts for high sensitive gas sensing
13
作者 Xinxin He Ping Guo +7 位作者 Xuyang An Yuyang Li Jiatai Chen Xingyu Zhang Lifeng Wang Mingjin Dai Chaoliang Tan Jia Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期216-248,共33页
Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the ... Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the semiconductor-based electrical gas sensor,the core is the catalysis process of target gas molecules on the sensitive materials.In this context,the SACs offer great potential for highly sensitive and selective gas sensing,however,only some of the bubbles come to the surface.To facilitate practical applications,we present a comprehensive review of the preparation strategies for SACs,with a focus on overcoming the challenges of aggregation and low loading.Extensive research efforts have been devoted to investigating the gas sensing mechanism,exploring sensitive materials,optimizing device structures,and refining signal post-processing techniques.Finally,the challenges and future perspectives on the SACs based gas sensing are presented. 展开更多
关键词 single atom catalysts PREPARATION sensing mechanism gas sensing
下载PDF
Microarrow sensor array with enhanced skin adhesion for transdermal continuous monitoring of glucose and reactive oxygen species
14
作者 Xinshuo Huang Baoming Liang +9 位作者 Shantao Zheng Feifei Wu Mengyi He Shuang Huang Jingbo Yang Qiangqiang Ouyang Fanmao Liu Jing Liu Hui-jiuan Chen Xi Xie 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an... Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients. 展开更多
关键词 Microarrow sensor array Glucose sensing Reactive oxygen species sensing Integrated system Continuous monitoring
下载PDF
Big data-driven water research towards metaverse
15
作者 Minori Uchimiya 《Water Science and Engineering》 EI CAS CSCD 2024年第2期101-107,共7页
Although big data is publicly available on water quality parameters,virtual simulation has not yet been adequately adapted in environmental chemistry research.Digital twin is different from conventional geospatial mod... Although big data is publicly available on water quality parameters,virtual simulation has not yet been adequately adapted in environmental chemistry research.Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic(e.g.,climate impact and water-related environmental catastrophe)or difficult to design and monitor in a real time(e.g.,pollutant and nutrient cycles in estuaries,soils,and sediments).Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios,including drinking water contamination. 展开更多
关键词 Data mining OMICS Remote sensing SENSOR CHEMOINFORMATICS
下载PDF
Waste Cotton-Derived Fiber-Based Thermoelectric Aerogel for Wearable and Self-Powered Temperature-Compression Strain Dual-Parameter Sensing
16
作者 Xinyang He Mingyuan Liu +7 位作者 Jiaxin Cai Zhen Li Zhilin Teng Yunna Hao Yifan Cui Jianyong Yu Liming Wang Xiaohong Qin 《Engineering》 SCIE EI CAS CSCD 2024年第8期235-243,共9页
The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems ca... The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices. 展开更多
关键词 Waste textiles High value-added recycling THERMOELECTRICS ELASTICITY Decoupled sensing
下载PDF
Determining the planting year of navel orange trees in mountainous and hilly areas of southern China:a remote sensing based method
17
作者 LEI Juncheng WANG Sha +1 位作者 WANG Yuandong LUO Wei 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3293-3305,共13页
Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,th... Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,the sources of error associated with using remote sensing to determine the planting year of fruit trees remain unclear.This study investigates several cultivated sweet orange(Citrus sinensis)varieties,which are extensively cultivated throughout subtropical China.We analyzed Landsat time series data from 132 navel orange orchards in Gannan,covering the period from 1993 to 2021.For each orchard,Google Earth Engine was employed to extract three vegetation indices—Enhanced Vegetation Index(EVI),Normalized Difference Vegetation Index(NDVI),and Normalized Burn Ratio(NBR)—for each available date,thereby generating three distinct vegetation index time series.The planting year of navel orange trees was identified based on abrupt changes observed in these time series.The principal sources of error in determining the planting year were investigated using the Wilcoxon signed-rank test,Spearman's correlation analysis,and Kruskal-Wallis H test.Key findings include:(1)Following the planting of navel orange trees,EVI,NDVI,and NBR exhibited fluctuations and a gradual increase over time,peaking approximately 10 to 15 years later.(2)The vegetation index time series derived from Landsat imagery effectively determined the planting year of evergreen navel orange trees in orchards,even within highly fragmented landscapes.Among these indices,NDVI and NBR time series outperformed the EVI time series.Specifically,the average determination errors for EVI,NDVI,and NBR time series were 6.4,1.8,and 2.8 years,respectively.(3)Major sources of error included the methods used to construct the time series,the selection of vegetation indices,and the orchard management practices.Overall,this study provides a viable method for determining the planting year of evergreen navel orange trees in fragmented landscapes and offers insights into factors contributing to uncertainty in planting year determination. 展开更多
关键词 Time series Remote sensing Google Earth Engine Gannan SUBTROPICS
下载PDF
Quantifying glacier surging and associated lake dynamics in Amu Darya river basin using UAV and remote sensing data
18
作者 SAFAROV Mustafo KANG Shichang +5 位作者 MURODOV Murodkhudzha BANERJEE Abhishek NAVRUZSHOEV Hofiz GULAYOZOV Majid FAZYLOV Ali VOSIDOV Firdavs 《Journal of Mountain Science》 SCIE CSCD 2024年第9期2967-2985,共19页
Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictab... Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks. 展开更多
关键词 UAV Remote sensing Climate change Glacier dynamics Google Earth Engine PAMIR
下载PDF
Comprehensive analysis of glacier recession(2000-2020)in the Nun-Kun Group of Glaciers,Northwestern Himalaya
19
作者 Shakil Ahmad ROMSHOO Ummer AMEEN +1 位作者 Mustafa Hameed BHAT Tariq ABDULLAH 《Journal of Mountain Science》 SCIE CSCD 2024年第3期768-785,共18页
Himalayan glaciers are shrinking rapidly,especially after 2000.Glacier shrinkage,however,shows a differential pattern in space and time,emphasizing the need to monitor and assess glacier changes at a larger scale.In t... Himalayan glaciers are shrinking rapidly,especially after 2000.Glacier shrinkage,however,shows a differential pattern in space and time,emphasizing the need to monitor and assess glacier changes at a larger scale.In this study,changes of 48 glaciers situated around the twin peaks of the Nun and Kun mountains in the northwestern Himalaya,hereafter referred to as Nun-Kun Group of Glaciers(NKGG),were investigated using Landsat satellite data during 2000-2020.Changes in glacier area,snout position,Equilibrium Line Altitude(ELA),surface thickness and glacier velocity were assessed using remote sensing data supplemented by field observations.The study revealed that the NKGG glaciers have experienced a recession of 4.5%±3.4%and their snouts have retreated at the rate of 6.4±1.6 m·a^(-1).Additionally,there was a 41%increase observed in the debris cover area during the observation period.Using the geodetic approach,an average glacier elevation change of-1.4±0.4 m·a^(-1)was observed between 2000 and 2012.The observed mass loss of the NKGG has resulted in the deceleration of glacier velocity from 27.0±3.7 m·a^(-1)in 2000 to 21.2±2.2 m·a^(-1)in 2020.The ELA has shifted upwards by 83.0±22 m during the period.Glacier morphological and topographic factors showed a strong influence on glacier recession.Furthermore,a higher recession of 12.9%±3.2%was observed in small glaciers,compared to 2.7%±3.1%in larger glaciers.The debris-covered glaciers showed lower shrinkage(2.8%±1.1%)compared to the clean glaciers(9.3%±5%).The glacier depletion recorded in the NKGG during the last two decades,if continued,would severely diminish glacial volume and capacity to store water,thus jeopardizing the sustainability of water resources in the basin. 展开更多
关键词 Nun-Kun range Glacier recession Glacier snout Remote Sensing HIMALAYA Glacier velocity
下载PDF
Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications
20
作者 Yilin Sun Huaipeng Wang Dan Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期403-434,共32页
Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to explo... Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices. 展开更多
关键词 Plasticity modulation Dynamic plasticity Chemical techniques Programmable operation Neuromorphic sensing
下载PDF
上一页 1 2 234 下一页 到第
使用帮助 返回顶部