期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Sensing Matrix Optimization for Multi-Target Localization Using Compressed Sensing in Wireless Sensor Network 被引量:2
1
作者 Xinhua Jiang Ning Li +2 位作者 Yan Guo Jie Liu Cong Wang 《China Communications》 SCIE CSCD 2022年第3期230-244,共15页
In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we p... In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods. 展开更多
关键词 compressed sensing hybrid metaheuristic K-means clustering multi-target localization t%-averaged mutual coherence sensing matrix optimization
下载PDF
Construction of deterministic sensing matrix and its application to DOA estimation 被引量:1
2
作者 Yi Shen Yan Jing Naizhang Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期10-19,共10页
Compressive sensing(CS) has emerged as a novel sampling framework which enables sparse signal acquisition and reconstruction with fewer measurements below the Nyquist rate.An important issue for CS is the constructi... Compressive sensing(CS) has emerged as a novel sampling framework which enables sparse signal acquisition and reconstruction with fewer measurements below the Nyquist rate.An important issue for CS is the construction of measurement matrix or sensing matrix.A new deterministic sensing matrix,named as OOC-B,is proposed by exploiting optical orthogonal codes(OOCs),Bernoulli matrix and Singer structure,which has the entries of 0,+1 and-1 before normalization.We have proven that the designed deterministic matrix is asymptotically optimal.In addition,the proposed deterministic sensing matrix is applied to direction of arrival(DOA) estimation of narrowband signals by CS arrays(CSA)processing and CS recovery.Theoretical analysis and simulation results show that the proposed sensing matrix has good performance for DOA estimation.It is very effective for simplifying hardware structure and decreasing computational complexity in DOA estimation by CSA processing.Besides,lower root mean square error(RMSE) and bias are obtained in DOA estimation by CS recovery. 展开更多
关键词 deterministic sensing matrix optical orthogonal code(OOC) Bernoulli matrix compressive sensing(CS) direction of arrival(DOA).
下载PDF
Soft piezoresistive pressure sensing matrix from copper nanowires composite aerogel 被引量:1
3
作者 Lim Wei Yap Shu Gong +2 位作者 Yue Tang Yonggang Zhu Wenlong Cheng 《Science Bulletin》 SCIE EI CAS CSCD 2016年第20期1624-1630,共7页
We report on a simple yet efficient approach to fabricate soft piezoresistive pressure sensors using copper nanowires-based aerogels.The sensors exhibit excellent sensitivity and durability and can be easily scalable ... We report on a simple yet efficient approach to fabricate soft piezoresistive pressure sensors using copper nanowires-based aerogels.The sensors exhibit excellent sensitivity and durability and can be easily scalable to form large-area sensing matrix for pressure mapping.This opens a low-cost strategy to wearable biomedical sensors. 展开更多
关键词 Copper nanowires AEROGEL PIEZORESISTIVE Pressure sensing matrix
原文传递
Construction of compressed sensing matrixes based on the singular pseudo-symplectic space over finite fields 被引量:1
4
作者 Gao You Tong Fenghua Zhang Xiaojuan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第6期82-89,共8页
Compressed sensing(CS) provides a new approach to acquire data as a sampling technique and makes it sure that a sparse signal can be reconstructed from few measurements. The construction of compressed matrixes is a ... Compressed sensing(CS) provides a new approach to acquire data as a sampling technique and makes it sure that a sparse signal can be reconstructed from few measurements. The construction of compressed matrixes is a central problem in compressed sensing. This paper provides a construction of deterministic CS matrixes, which are also disjunct and inclusive matrixes, from singular pseudo-symplectic space over finite fields of characteristic 2. Our construction is superior to De Vore's construction under some conditions and can be used to reconstruct sparse signals through an efficient algorithm. 展开更多
关键词 compressed sensing matrix singular pseudo-symplectic space sparse signal disjunct matrix inclusive matrix
原文传递
Data Gathering in Wireless Sensor Networks Via Regular Low Density Parity Check Matrix 被引量:1
5
作者 Xiaoxia Song Yong Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期83-91,共9页
A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomne... A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs. 展开更多
关键词 Data gathering regular low density parity check(RLDPC) matrix sensing matrix signal reconstruction wireless sensor networks(WSNs)
下载PDF
COMPRESSED SPEECH SIGNAL SENSING BASED ON THE STRUCTURED BLOCK SPARSITY WITH PARTIAL KNOWLEDGE OF SUPPORT 被引量:1
6
作者 JiYunyun YangZhen XuQian 《Journal of Electronics(China)》 2012年第1期62-71,共10页
Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discusse... Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discussed in this paper. The first one is the block sparsity of DCT coefficients of voiced speech formulated from two different aspects which are the distribution of the DCT coefficients of voiced speech and the comparison of reconstruction performance between the mixed program and Basis Pursuit (BP). The block sparsity of DCT coefficients of voiced speech means that some algorithms of block-sparse CS can be used to improve the recovery performance of speech signals. It is proved by the simulation results of the mixed program which is an improved version of the mixed program. The second one is the well known large DCT coefficients of voiced speech focus on low frequency. In line with this feature, a special Gaussian and Partial Identity Joint (GPIJ) matrix is constructed as the sensing matrix for voiced speech signals. Simulation results show that the GPIJ matrix outperforms the classical Gaussian matrix for speech signals of male and female adults. 展开更多
关键词 Compressed sensing (CS) Speech signals sensing matrix Block sparsity
下载PDF
A CLASS OF DETERMINISTIC CONSTRUCTION OF BINARY COMPRESSED SENSING MATRICES 被引量:1
7
作者 Li Dandan Liu Xinji +1 位作者 Xia Shutao Jiang Yong 《Journal of Electronics(China)》 2012年第6期493-500,共8页
Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the a... Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the application of Low-Density Parity-Check (LDPC) Codes in CS. Firstly, we find a sufficient condition for a binary matrix to satisfy the Restricted Isometric Property (RIP). Then, by employing the LDPC codes based on Berlekamp-Justesen (B-J) codes, we construct two classes of binary structured matrices and show that these matrices satisfy RIP. Thus, the proposed matrices could be used as sensing matrices for CS. Finally, simulation results show that the performance of the proposed matrices can be comparable with the widely used random sensing matrices. 展开更多
关键词 Compressed sensing (CS) Low-Density Parity-Check (LDPC) Codes Restricted Isowmetric Property (RIP) sensing matrix Deterministic construction
下载PDF
Robust signal recovery algorithm for structured perturbation compressive sensing 被引量:2
8
作者 Youhua Wang Jianqiu Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期319-325,共7页
It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical... It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones. 展开更多
关键词 sparse signal recovery compressive sensing(CS) structured matrix perturbation
下载PDF
Optical SDMA for applying compressive sensing in WSN 被引量:1
9
作者 Xuewen Liu Song Xiao Lei Quan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期780-789,共10页
In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space divis... In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated. 展开更多
关键词 wireless sensor network compressive sensing space division multiple access optical matrix switch laser beam tracking
下载PDF
Fusion of multispectral image and panchromatic image based on NSCT and NMF 被引量:4
10
作者 吴一全 吴超 吴诗婳 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期415-420,共6页
A novel fusion method of multispectral image and panchromatic image based on nonsubsampled contourlet transform(NSCT) and non-negative matrix factorization(NMF) is presented,the aim of which is to preserve both sp... A novel fusion method of multispectral image and panchromatic image based on nonsubsampled contourlet transform(NSCT) and non-negative matrix factorization(NMF) is presented,the aim of which is to preserve both spectral and spatial information simultaneously in fused image.NMF is a matrix factorization method,which can extract the local feature by choosing suitable dimension of the feature subspace.Firstly the multispectral image was represented in intensity hue saturation(IHS) system.Then the I component and panchromatic image were decomposed by NSCT.Next we used NMF to learn the feature of both multispectral and panchromatic images' low-frequency subbands,and the selection principle of the other coefficients was absolute maximum criterion.Finally the new coefficients were reconstructed to get the fused image.Experiments are carried out and the results are compared with some other methods,which show that the new method performs better in improving the spatial resolution and preserving the feature information than the other existing relative methods. 展开更多
关键词 image fusion multispectral sensing image panchromatic image nousubsampled contourlet transform(NSCT) non-negative matrix factorization(NMF)
下载PDF
A Verifiable Secret Image Sharing Scheme Based on Compressive Sensing
11
作者 LI Xinyan XIAO Di +1 位作者 MOU Huajian ZHANG Rui 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第3期219-224,共6页
This paper proposes a verifiable secret image sharing scheme based on compressive sensing, secret sharing, and image hashing. In this scheme, Toeplitz matrix generated by two chaotic maps is employed as measurement ma... This paper proposes a verifiable secret image sharing scheme based on compressive sensing, secret sharing, and image hashing. In this scheme, Toeplitz matrix generated by two chaotic maps is employed as measurement matrix. With the help of Shamir threshold scheme and image hashing, the receivers can obtain the stored values and the hash value of image. In the verifying stage and restoring stage, there must be at least t legal receivers to get the effective information. By comparing the hash value of the restored image with the hash value of original image, the scheme can effectively prevent the attacker from tampering or forging the shared images. Experimental results show that the proposed scheme has good recovery performance, can effectively reduce space, and is suitable for real-time transmission, storage, and verification. 展开更多
关键词 compressive sensing secret sharing measurement matrix image hashing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部