In pH 2.0-3.0 medium,niobium(v)forms molybdoniobic acid with sodium molybdate.A spectrophotometric method has been developed for the determination of niobium based on the formation of ion-associate compound of molybdo...In pH 2.0-3.0 medium,niobium(v)forms molybdoniobic acid with sodium molybdate.A spectrophotometric method has been developed for the determination of niobium based on the formation of ion-associate compound of molybdoniobate with butyl Rhodamine B in aqueous solution in the presence of polyvinyl alcohol and 0.4-0.7 mol/L H_2SO_4.The molar absorptivity is 7.5×10~5 L.mol^(-1).cm^(-1) for niobium at 585 nm.展开更多
In pH2.0-3.0,niobium(V)forms molybdonlobic acid with sodium molybdate.A spectrophotometric method has been developed for the deter- mination of niobium based on the formation of ion-associate compound of molybdoniobat...In pH2.0-3.0,niobium(V)forms molybdonlobic acid with sodium molybdate.A spectrophotometric method has been developed for the deter- mination of niobium based on the formation of ion-associate compound of molybdoniobate with Butyl Rhodamine B in aqueous solution in the presence of polyvinyl alcohol and 0.4-0.7 mol/L H_2SO_4.The maximum absorption of ion-associate compound exhioits at 85 nm and the molar absorptivity is 7.5×1.0~5 L.mol^(-1).cm^(-1)for niobium.The new method has been applied to the determination of microamounts niobium in silicate rock,when niobium content is at the level of 8×10^(-3)%,with the relative standard deviation of about 3%.展开更多
Based upon the standard deviations for the intercept and the slope of a linear regression line, as well as by differentiating both Beer's law and a linear relationship between transmittance and concentration at high ...Based upon the standard deviations for the intercept and the slope of a linear regression line, as well as by differentiating both Beer's law and a linear relationship between transmittance and concentration at high transmission, it is proved that the relative spectrophotometric error of a measurement becomes greater as the sample concentration only decreases. Further, it is demonstrated that the present knowledge with regard to the error in absorption spectrophotometry is necessary to be reexamined. The total scale of transmittance can literally be used for measurements, unfolding workable dynamic ranges about two orders of magnitude lower than usually and thus absorption spectrophotometry can efficiently compete with other methods of analysis with respect to detection limits.展开更多
文摘In pH 2.0-3.0 medium,niobium(v)forms molybdoniobic acid with sodium molybdate.A spectrophotometric method has been developed for the determination of niobium based on the formation of ion-associate compound of molybdoniobate with butyl Rhodamine B in aqueous solution in the presence of polyvinyl alcohol and 0.4-0.7 mol/L H_2SO_4.The molar absorptivity is 7.5×10~5 L.mol^(-1).cm^(-1) for niobium at 585 nm.
文摘In pH2.0-3.0,niobium(V)forms molybdonlobic acid with sodium molybdate.A spectrophotometric method has been developed for the deter- mination of niobium based on the formation of ion-associate compound of molybdoniobate with Butyl Rhodamine B in aqueous solution in the presence of polyvinyl alcohol and 0.4-0.7 mol/L H_2SO_4.The maximum absorption of ion-associate compound exhioits at 85 nm and the molar absorptivity is 7.5×1.0~5 L.mol^(-1).cm^(-1)for niobium.The new method has been applied to the determination of microamounts niobium in silicate rock,when niobium content is at the level of 8×10^(-3)%,with the relative standard deviation of about 3%.
文摘Based upon the standard deviations for the intercept and the slope of a linear regression line, as well as by differentiating both Beer's law and a linear relationship between transmittance and concentration at high transmission, it is proved that the relative spectrophotometric error of a measurement becomes greater as the sample concentration only decreases. Further, it is demonstrated that the present knowledge with regard to the error in absorption spectrophotometry is necessary to be reexamined. The total scale of transmittance can literally be used for measurements, unfolding workable dynamic ranges about two orders of magnitude lower than usually and thus absorption spectrophotometry can efficiently compete with other methods of analysis with respect to detection limits.