Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury(SCI). The correlation between brain anatomical changes and fun...Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury(SCI). The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI(mean age 40.94 ± 14.10 years old; male:female, 7:11) and 18 healthy subjects(37.33 ± 11.79 years old; male:female, 7:11) were studied by resting state functional magnetic resonance imaging. Gray matter volume(GMV) and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex(BA1) and left primary motor cortex(BA4), and left BA1 and left somatosensory association cortex(BA5) was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI. This trial was registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-ROC-17013566).展开更多
Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact...Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can acti- vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.展开更多
We performed functional MRI examinations in six right-handed healthy subjects.During functional MRI scanning,transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cor...We performed functional MRI examinations in six right-handed healthy subjects.During functional MRI scanning,transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation.This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions.Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation.These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.展开更多
Oxidative stress plays an indispensable role in the pathogenesis of cerebral ischemia.Inhibiting oxidative stress has been considered as an effective approach for stroke treatment.Edaravone,a free radical scavenger,ha...Oxidative stress plays an indispensable role in the pathogenesis of cerebral ischemia.Inhibiting oxidative stress has been considered as an effective approach for stroke treatment.Edaravone,a free radical scavenger,has been shown to prevent cerebral ischemic injury.However,the clinical efficacy of edaravone is limited because it has a low scavenging activity for superoxide anions(O_2-(·-)).Here,we report that 2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine,a novel small-molecule compound structurally related to edaravone,showed a stronger inhibitory effect on oxidative stress in vitro.In vivo,2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine reversed transient middle cerebral artery occlusion-induced dysfunctions of superoxide dismutases and malondialdehyde,two proteins crucial for oxidative stress,suggesting a strengthened antioxidant system.Moreover,2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine decreased blood brain barrier permeability.Then,we found that 2-methyl-5 Hbenzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine had a stronger neuroprotective effect than edaravone.More importantly,2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine decreased not only infarct size and neurological deficits in the acute phase but also modified neurological severity score and escape latency in Morris water maze task in the delayed period,indicating enhanced neuroprotection,sensorimotor function and spatial memory.Together,these findings suggest that 2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine could be a preferable option for stroke treatment.展开更多
Carpal tunnel syndrome is the most common compressive neuropathy,presenting with sensorimotor dysfunction.In carpal tunnel syndrome patients,irregular afferent signals on functional magnetic resonance imaging are asso...Carpal tunnel syndrome is the most common compressive neuropathy,presenting with sensorimotor dysfunction.In carpal tunnel syndrome patients,irregular afferent signals on functional magnetic resonance imaging are associated with changes in neural plasticity during peripheral nerve injury.However,it is difficult to obtain multi-point neuroimaging data of the brain in the clinic.In the present study,a rat model of median nerve compression was established by median nerve ligation,i.e.,carpal tunnel syndrome model.Sensory cortex remodeling was determined by functional magnetic resonance imaging between normal rats and carpal tunnel syndrome models at 2 weeks and 2 months after operation.Stimulation of bilateral paws by electricity for 30 seconds,alternating with 30 seconds of rest period(repeatedly 3 times),resulted in activation of the contralateral sensorimotor cortex in normal rats.When carpal tunnel syndrome rats received this stimulation,the contralateral cerebral hemisphere was markedly activated at 2 weeks after operation,including the primary motor cortex,cerebellum,and thalamus.Moreover,this activation was not visible at 2 months after operation.These findings suggest that significant remodeling of the cerebral cortex appears at 2 weeks and 2 months after median nerve compression.展开更多
基金supported by a grant from Tsinghua University Initiative Scientific Research Program,No.2014081266,20131089382the National Natural Science Foundation of China,No.61171002,60372023
文摘Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury(SCI). The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI(mean age 40.94 ± 14.10 years old; male:female, 7:11) and 18 healthy subjects(37.33 ± 11.79 years old; male:female, 7:11) were studied by resting state functional magnetic resonance imaging. Gray matter volume(GMV) and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex(BA1) and left primary motor cortex(BA4), and left BA1 and left somatosensory association cortex(BA5) was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI. This trial was registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-ROC-17013566).
基金supported by the National Natural Science Foundation of China,No.30973165 and 81372108Guangdong Province College Students Innovative Research Projects in 2013
文摘Virtual reality is a new technology that simulates a three-dimensional virtual world on a com- puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can acti- vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.
基金supported by a National Research Foundation of Korea Grant funded by the Korean Government,No.2009-0064682
文摘We performed functional MRI examinations in six right-handed healthy subjects.During functional MRI scanning,transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation.This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions.Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation.These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.
基金supported by grants from NationalNatural Science Foundation of China(31530091,91232304)National Key Research and Development Program of China(2016YFC1306703)+1 种基金Natural Science Foundation of Jiangsu Province(BK20140905)by the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine
文摘Oxidative stress plays an indispensable role in the pathogenesis of cerebral ischemia.Inhibiting oxidative stress has been considered as an effective approach for stroke treatment.Edaravone,a free radical scavenger,has been shown to prevent cerebral ischemic injury.However,the clinical efficacy of edaravone is limited because it has a low scavenging activity for superoxide anions(O_2-(·-)).Here,we report that 2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine,a novel small-molecule compound structurally related to edaravone,showed a stronger inhibitory effect on oxidative stress in vitro.In vivo,2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine reversed transient middle cerebral artery occlusion-induced dysfunctions of superoxide dismutases and malondialdehyde,two proteins crucial for oxidative stress,suggesting a strengthened antioxidant system.Moreover,2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine decreased blood brain barrier permeability.Then,we found that 2-methyl-5 Hbenzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine had a stronger neuroprotective effect than edaravone.More importantly,2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine decreased not only infarct size and neurological deficits in the acute phase but also modified neurological severity score and escape latency in Morris water maze task in the delayed period,indicating enhanced neuroprotection,sensorimotor function and spatial memory.Together,these findings suggest that 2-methyl-5 H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine could be a preferable option for stroke treatment.
基金supported by the National Natural Science Foundation of China,No.81371965,81672144a grant from the Shanghai Pujiang Program of China,No.16PJD035
文摘Carpal tunnel syndrome is the most common compressive neuropathy,presenting with sensorimotor dysfunction.In carpal tunnel syndrome patients,irregular afferent signals on functional magnetic resonance imaging are associated with changes in neural plasticity during peripheral nerve injury.However,it is difficult to obtain multi-point neuroimaging data of the brain in the clinic.In the present study,a rat model of median nerve compression was established by median nerve ligation,i.e.,carpal tunnel syndrome model.Sensory cortex remodeling was determined by functional magnetic resonance imaging between normal rats and carpal tunnel syndrome models at 2 weeks and 2 months after operation.Stimulation of bilateral paws by electricity for 30 seconds,alternating with 30 seconds of rest period(repeatedly 3 times),resulted in activation of the contralateral sensorimotor cortex in normal rats.When carpal tunnel syndrome rats received this stimulation,the contralateral cerebral hemisphere was markedly activated at 2 weeks after operation,including the primary motor cortex,cerebellum,and thalamus.Moreover,this activation was not visible at 2 months after operation.These findings suggest that significant remodeling of the cerebral cortex appears at 2 weeks and 2 months after median nerve compression.