After the 2011 Tohoku earthquake (EQ), there have been numerous aftershocks in the eastern and Pacific Ocean of Japan, but EQs are still rare in the western part of Japan. In this situation a relatively large (magnitu...After the 2011 Tohoku earthquake (EQ), there have been numerous aftershocks in the eastern and Pacific Ocean of Japan, but EQs are still rare in the western part of Japan. In this situation a relatively large (magnitude (M) ~6) EQ happened on April 12 (UT), 2013 at a place close to the former 1995 Kobe EQ (M~7), so we have tried to find whether there existed any precursors to this EQ, especially abnormal animal behavior (milk yield of cows), observed at Kagawa, Shikoku, near the EQ epicenter. The milk yield of cows has been continuously monitored at Kagawa, and it is found that the milk yield exhibited an abnormal depletion about 10 days before the EQ. This behavior has been extensively compared with the former electromagnetic precursors (ULF radiation, ionos-pheric perturbation). This leads to the discussion on the sensory mechanism of unusual behavior of mild yield of cows, and it may be suggested that ULF radiation among different electromagnetic precursors is a mostly likely driver, at least, for this EQ.展开更多
Animals' free movement in natural environments has attracted many researchers to explore control methods for bio-inspired robots. This paper presents a novel reflex mechanism based on a Central Pattern Generator (CP...Animals' free movement in natural environments has attracted many researchers to explore control methods for bio-inspired robots. This paper presents a novel reflex mechanism based on a Central Pattern Generator (CPG) for adaptive locomotion of limbless robots. First, inspired by the concept of reflex arc, the reflex mechanism is designed on a connectionist CPG model. Since the CPG model inspired by the spinal cord of lampreys is developed at the neuron level, it provides a possible natural solution for sensory reflex integration. Therefore, sensory neurons that bridge the external stimuli and the CPG model, together with the concept of reflex arc, are utilized for designing the sensory reflex mechanism. Then, a border reflex and a body reflex are further developed and applied on the ends and the middle part of a limbless robot, respectively. Finally, a ball hitting scenario and a corridor passing scenario are designed to verify the proposed method. Results of simulations and on-site experiments show the feasibility and effectiveness of the reflex mechanism in realizing fast response and adaptive limbless locomotion.展开更多
文摘After the 2011 Tohoku earthquake (EQ), there have been numerous aftershocks in the eastern and Pacific Ocean of Japan, but EQs are still rare in the western part of Japan. In this situation a relatively large (magnitude (M) ~6) EQ happened on April 12 (UT), 2013 at a place close to the former 1995 Kobe EQ (M~7), so we have tried to find whether there existed any precursors to this EQ, especially abnormal animal behavior (milk yield of cows), observed at Kagawa, Shikoku, near the EQ epicenter. The milk yield of cows has been continuously monitored at Kagawa, and it is found that the milk yield exhibited an abnormal depletion about 10 days before the EQ. This behavior has been extensively compared with the former electromagnetic precursors (ULF radiation, ionos-pheric perturbation). This leads to the discussion on the sensory mechanism of unusual behavior of mild yield of cows, and it may be suggested that ULF radiation among different electromagnetic precursors is a mostly likely driver, at least, for this EQ.
文摘Animals' free movement in natural environments has attracted many researchers to explore control methods for bio-inspired robots. This paper presents a novel reflex mechanism based on a Central Pattern Generator (CPG) for adaptive locomotion of limbless robots. First, inspired by the concept of reflex arc, the reflex mechanism is designed on a connectionist CPG model. Since the CPG model inspired by the spinal cord of lampreys is developed at the neuron level, it provides a possible natural solution for sensory reflex integration. Therefore, sensory neurons that bridge the external stimuli and the CPG model, together with the concept of reflex arc, are utilized for designing the sensory reflex mechanism. Then, a border reflex and a body reflex are further developed and applied on the ends and the middle part of a limbless robot, respectively. Finally, a ball hitting scenario and a corridor passing scenario are designed to verify the proposed method. Results of simulations and on-site experiments show the feasibility and effectiveness of the reflex mechanism in realizing fast response and adaptive limbless locomotion.