Many datasets in E-commerce have rich information about items and users who purchase or rate them. This information can enable advanced machine learning algorithms to extract and assign user sentiments to various aspe...Many datasets in E-commerce have rich information about items and users who purchase or rate them. This information can enable advanced machine learning algorithms to extract and assign user sentiments to various aspects of the items thus leading to more sophisticated and justifiable recommendations. However, most Collaborative Filtering (CF) techniques rely mainly on the overall preferences of users toward items only. And there is lack of conceptual and computational framework that enables an understandable aspect-based AI approach to recommending items to users. In this paper, we propose concepts and computational tools that can sharpen the logic of recommendations and that rely on users’ sentiments along various aspects of items. These concepts include: The sentiment of a user towards a specific aspect of a specific item, the emphasis that a given user places on a specific aspect in general, the popularity and controversy of an aspect among groups of users, clusters of users emphasizing a given aspect, clusters of items that are popular among a group of users and so forth. The framework introduced in this study is developed in terms of user emphasis, aspect popularity, aspect controversy, and users and items similarity. Towards this end, we introduce the Aspect-Based Collaborative Filtering Toolbox (ABCFT), where the tools are all developed based on the three-index sentiment tensor with the indices being the user, item, and aspect. The toolbox computes solutions to the questions alluded to above. We illustrate the methodology using a hotel review dataset having around 6000 users, 400 hotels and 6 aspects.展开更多
文摘Many datasets in E-commerce have rich information about items and users who purchase or rate them. This information can enable advanced machine learning algorithms to extract and assign user sentiments to various aspects of the items thus leading to more sophisticated and justifiable recommendations. However, most Collaborative Filtering (CF) techniques rely mainly on the overall preferences of users toward items only. And there is lack of conceptual and computational framework that enables an understandable aspect-based AI approach to recommending items to users. In this paper, we propose concepts and computational tools that can sharpen the logic of recommendations and that rely on users’ sentiments along various aspects of items. These concepts include: The sentiment of a user towards a specific aspect of a specific item, the emphasis that a given user places on a specific aspect in general, the popularity and controversy of an aspect among groups of users, clusters of users emphasizing a given aspect, clusters of items that are popular among a group of users and so forth. The framework introduced in this study is developed in terms of user emphasis, aspect popularity, aspect controversy, and users and items similarity. Towards this end, we introduce the Aspect-Based Collaborative Filtering Toolbox (ABCFT), where the tools are all developed based on the three-index sentiment tensor with the indices being the user, item, and aspect. The toolbox computes solutions to the questions alluded to above. We illustrate the methodology using a hotel review dataset having around 6000 users, 400 hotels and 6 aspects.
文摘提出了一种基于情感词典和概念层次网络(hierarchical network concepts,HNC)语境框架的文本情感倾向性分析方法,将文本的情感倾向分析分为两个阶段:特征词、语句和句群判定阶段;基于HNC语境框架的句与句群情感分析阶段。首先以How Net情感词典和自建的形容词配价词典(valency dictionary of English adjective,VDEA)作为基础词典资源进行文本特征词匹配,在此基础上基于HNC语境框架进行文本的情感倾向性判定,融合情感词典资源与HNC语境框架的独特优势,从特征词语情感分析入手,以包含特征词的语句及句群为情感分析重点,进而确定文本的情感倾向性,体现了HNC"有所为有所不为"的思想。为验证方法的有效性,文本分别对政治、经济、体育与影视评论等领域文本进行测试,从实验结果可以看出商品评论以及影评类的文本情感识别率相对较高,而政治与体育类识别率低,但基本达到了预期实验效果,从而验证了本方法的可行性。