The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the...The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.展开更多
Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new su...Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new sulfidization flotation process was developed to promote the efficient recovery of malachite.In this study,Cu^(2+) was used as an activator to interact with the sample surface and increase its reaction sites,thereby strengthening the mineral sulfidization process and reactivity.Compared to single copper ion activation,the flota-tion effect of malachite significantly increased after stepwise Cu^(2+) activation.Zeta potential,X-ray photoelectron spectroscopy(XPS),time-of-flight secondary ion mass spectroscopy(ToF-SIMS),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS),and atomic force microscopy(AFM)analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu^(2+) stepwise activation.Meanwhile,the proportion of active Cu-S spe-cies also increased,further improving the reaction between the sample surface and subsequent collectors.Fourier-transform infrared spec-troscopy(FT-IR)and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu^(2+) stepwise activation,thereby improving the hydrophobicity of the mineral surface.Therefore,the copper sites on the malachite sur-face after Cu^(2+) stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.展开更多
Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satis- factory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of...Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satis- factory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mecha- nisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions re- leased from the ancient fluids reached 1.02 × 10-6 tool/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 ×10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.展开更多
Malachite is one of the main minerals used for the industrial enrichment and recovery of copper oxide resources, and copper ions are unavoidable metal ions in the flotation pulp. The microflotation, contact angle, and...Malachite is one of the main minerals used for the industrial enrichment and recovery of copper oxide resources, and copper ions are unavoidable metal ions in the flotation pulp. The microflotation, contact angle, and adsorption experiments indicated that pretreatment with an appropriate concentration of copper ions could improve the malachite recovery, and the addition of excess copper ions reduced the hydrophobicity of the malachite surface. The results of zeta potential tests indicated that sodium sulfide and butyl xanthate were also adsorbed on the surface of malachite pretreated with copper ions. X-ray photoelectron spectroscopy(XPS) results indicated that —Cu—O and —Cu—OH bonds were formed on the surface of the samples. After pretreatment with an appropriate concentration of copper ions, the number of —OH groups on the mineral surface decreased, whereas the number of Cu—S groups on the mineral surface increased, which was conducive to the sulfidization of malachite. After adding a high concentration of copper ions, the —OH groups on the mineral surface increased, whereas the number of Cu—S groups decreased, which had an adverse effect on the sulfidization flotation of malachite. Time-of-flight secondary ion mass spectrometry showed that pretreatment with copper ions resulted in a thicker sulfidization layer on the mineral surface.展开更多
Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processi...Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.展开更多
A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted a...A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.展开更多
Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in th...Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in the first stage into the initial solution.The effects of reaction time,temperature and H2S dosage on copper and arsenic removal efficiencies as well as the effects of solid-toliquidratio,time and temperature on the replacement of arsenic by copper were investigated.With20mmol/L H2S at50°C within0.5min,more than80%copper and nearly20%arsenic were precipitated.The separation efficiencies of copper and arsenic werehigher than99%by the replacement reaction between arsenic and copper ions when solid-to-liquid ratio was more than10%at20°Cwithin10min.CuS was the main phases in precipitate in which copper content was63.38%in mass fraction.展开更多
The Kansanshi mixed copper sulfide-oxide ore contains significant proportions of fine material manifesting in a variety of processing challenges. This paper presents the work which was carried out to evaluate the effi...The Kansanshi mixed copper sulfide-oxide ore contains significant proportions of fine material manifesting in a variety of processing challenges. This paper presents the work which was carried out to evaluate the efficacy of desliming in improving the flotation response of the ore. Two modes of desliming were investigated, namely;sieving and elutriation after which the deslimed material was subjected to Kansanshi standard laboratory flotation conditions. The minimum copper feed grade for the mixed copper ore was 0.5% Total Copper (TCu). The outcome of this work has shown that desliming improves the flotation response of the Kansanshi mixed copper ore. At a rougher copper concentrate grade of 8%, copper metal recoveries obtained with desliming were in excess of 70% compared to 58% achieved with baseline tests without desliming. It was further observed that desliming resulted in improved flotation rates for the sulfide minerals. For a flotation time of 3 minutes, recoveries of 69% and 74% were obtained with elutriation and sieving respectively compared to 58% recovery for baseline tests. From the same results it was also evident that, of the two modes of desliming investigated, sieving yielded better performance than elutriation.展开更多
Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study propo...Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study proposed a new process involving sulfidation roasting, magnetic separation and flotation to recover zinc and iron in ZLR. Through sulfidation roasting of ZLR with pyrite, zinc and iron were converted into ZnS and Fe3 O4. The effects of pyrite dosage, roasting temperature and roasting time on the sulfidation of zinc in ZLR were investigated. The results showed that the sulfidation percentage of zinc reached 91.8% under the optimum condition. Besides, it was found that ball-milling was favorable for the separation and recovery of zinc and iron in sulfidation products. After ball-milling pretreatment, iron and zinc were enriched from sulfidation products by magnetic separation and flotation. The grade of iron in magnetic concentrates was 52.3% and the grade of zinc in flotation concentrates was 31.7%, which realized the recovery of resources.展开更多
This work focuses on the organic depressant,disodium bis(carboxymethyl)trithiocarbonate(DBT),as a selectivedepressant in copper?molybdenum sulfide flotation separation.Micro-flotation,Zeta potential,FTIR and XPS measu...This work focuses on the organic depressant,disodium bis(carboxymethyl)trithiocarbonate(DBT),as a selectivedepressant in copper?molybdenum sulfide flotation separation.Micro-flotation,Zeta potential,FTIR and XPS measurements werecarried out to investigate the selective depression mechanism of DBT on chalcopyrite.Zeta potential and FTIR measurementsrevealed that DBT had higher affinity for chalcopyrite than molybdenite and the XPS results of chalcopyrite before and aftertreatment with DBT further proved that DBT adsorbed on chalcopyrite surface.The investigation indicates that the mechanism ofDBT adsorbing on chalcopyrite is mainly physical adsorption.Locked circuit experiments were carried out and the results showedthat DBT could be considered as a cleaner option in commercial Cu?Mo flotation separation circuits.展开更多
To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leach...To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leaching was proposed. Firstly, several factors such as pyrite dosage, roasting temperature, carbon powder dosage, holding time and particle size affecting on the flotation performance of Zn(Pb) and magnetic separation performance of Fe were simultaneously examined and the optimum process parameters were determined. A flotation concentrate, containing 17.46% Zn and 3.93% Pb, was obtained, and the Zn and Pb recoveries were 86.04% and 69.08%, respectively. The obtained flotation tailing was concentrated by a low-intensity magnetic separator. The grade of iron increased from 5.45% to 43.45% and the recovery of iron reached 64.87%. Hydrochloric acid leaching was then carried out for the magnetic separation tailing and a raw quartz concentrate containing 81.05% SiO2 was obtained. To further interpret the sulfidation mechanism of smithsonite, surface morphology and component of the sample before and after reactions were characterized by XRD and EPMA-EDS. The aim was to achieve the comprehensive utilization of the low-grade mining ore.展开更多
基金financially supported by the Yunnan Major Scientific and Technological Projects,China (No.202202AG050015)the National Natural Science Foundation of China (No.51464029)。
文摘The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.
基金supported by Yunnan Fundamental Research Projects(No.202101BE070001-009)Yunnan Major Scientific and Technological Projects(No.202202AG050015)National Natural Science Foundation of China(No.51464029).
文摘Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new sulfidization flotation process was developed to promote the efficient recovery of malachite.In this study,Cu^(2+) was used as an activator to interact with the sample surface and increase its reaction sites,thereby strengthening the mineral sulfidization process and reactivity.Compared to single copper ion activation,the flota-tion effect of malachite significantly increased after stepwise Cu^(2+) activation.Zeta potential,X-ray photoelectron spectroscopy(XPS),time-of-flight secondary ion mass spectroscopy(ToF-SIMS),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS),and atomic force microscopy(AFM)analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu^(2+) stepwise activation.Meanwhile,the proportion of active Cu-S spe-cies also increased,further improving the reaction between the sample surface and subsequent collectors.Fourier-transform infrared spec-troscopy(FT-IR)and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu^(2+) stepwise activation,thereby improving the hydrophobicity of the mineral surface.Therefore,the copper sites on the malachite sur-face after Cu^(2+) stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.
基金financially supported by the National Natural Science Foundation of China(Nos.51464029,51404119,and 51168020)the Natural Science Foundation of Yunnan Province,China(Nos.2012J08 and 2014Y0845)the Excellent Doctoral Dissertation and Talent Cultivation Foundation of Kunming University of Science and Technology(Nos.41118011 and 201421066)
文摘Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satis- factory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mecha- nisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions re- leased from the ancient fluids reached 1.02 × 10-6 tool/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 ×10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.
基金supported by Yunnan Fundamental Research Projects (No. 202101BE070001-009)Open Foundation of State Key Laboratory of Mineral Processing (No. BGRIMM-KJSKL-202124)Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province (No. YNWR-QNBJ-2018-051)。
文摘Malachite is one of the main minerals used for the industrial enrichment and recovery of copper oxide resources, and copper ions are unavoidable metal ions in the flotation pulp. The microflotation, contact angle, and adsorption experiments indicated that pretreatment with an appropriate concentration of copper ions could improve the malachite recovery, and the addition of excess copper ions reduced the hydrophobicity of the malachite surface. The results of zeta potential tests indicated that sodium sulfide and butyl xanthate were also adsorbed on the surface of malachite pretreated with copper ions. X-ray photoelectron spectroscopy(XPS) results indicated that —Cu—O and —Cu—OH bonds were formed on the surface of the samples. After pretreatment with an appropriate concentration of copper ions, the number of —OH groups on the mineral surface decreased, whereas the number of Cu—S groups on the mineral surface increased, which was conducive to the sulfidization of malachite. After adding a high concentration of copper ions, the —OH groups on the mineral surface increased, whereas the number of Cu—S groups decreased, which had an adverse effect on the sulfidization flotation of malachite. Time-of-flight secondary ion mass spectrometry showed that pretreatment with copper ions resulted in a thicker sulfidization layer on the mineral surface.
基金supported by Yunnan Fundamental Research Projects(No.202101BE070001-009)China Postdoctoral Science Foundation(No.2018T111000)Applied Basic Research Foundation of Yunnan Province(No.2018FD035).
文摘Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.
基金Project(50874117) supported by the National Natural Science Foundation of China
文摘A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.
基金Projects(51304251,51504299)supported by the National Natural Science Foundation of ChinaProject(201509050)+1 种基金supported by Special Program on Environmental Protection for Public Welfare,ChinaProject(k1502037-31)supported by Key Project of Changsha,China
文摘Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in the first stage into the initial solution.The effects of reaction time,temperature and H2S dosage on copper and arsenic removal efficiencies as well as the effects of solid-toliquidratio,time and temperature on the replacement of arsenic by copper were investigated.With20mmol/L H2S at50°C within0.5min,more than80%copper and nearly20%arsenic were precipitated.The separation efficiencies of copper and arsenic werehigher than99%by the replacement reaction between arsenic and copper ions when solid-to-liquid ratio was more than10%at20°Cwithin10min.CuS was the main phases in precipitate in which copper content was63.38%in mass fraction.
文摘The Kansanshi mixed copper sulfide-oxide ore contains significant proportions of fine material manifesting in a variety of processing challenges. This paper presents the work which was carried out to evaluate the efficacy of desliming in improving the flotation response of the ore. Two modes of desliming were investigated, namely;sieving and elutriation after which the deslimed material was subjected to Kansanshi standard laboratory flotation conditions. The minimum copper feed grade for the mixed copper ore was 0.5% Total Copper (TCu). The outcome of this work has shown that desliming improves the flotation response of the Kansanshi mixed copper ore. At a rougher copper concentrate grade of 8%, copper metal recoveries obtained with desliming were in excess of 70% compared to 58% achieved with baseline tests without desliming. It was further observed that desliming resulted in improved flotation rates for the sulfide minerals. For a flotation time of 3 minutes, recoveries of 69% and 74% were obtained with elutriation and sieving respectively compared to 58% recovery for baseline tests. From the same results it was also evident that, of the two modes of desliming investigated, sieving yielded better performance than elutriation.
基金Project(2018YFC1900305)supported by the National Key R&D Program of ChinaProject(51825403)supported by the National Science Foundation for Distinguished Young Scholars,China+1 种基金Projects(51634010,51474247,51904354)supported by the National Natural Science Foundation of ChinaProject(2019SK2291)supported by the Key Research and Development Program of Hunan Province,China。
文摘Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study proposed a new process involving sulfidation roasting, magnetic separation and flotation to recover zinc and iron in ZLR. Through sulfidation roasting of ZLR with pyrite, zinc and iron were converted into ZnS and Fe3 O4. The effects of pyrite dosage, roasting temperature and roasting time on the sulfidation of zinc in ZLR were investigated. The results showed that the sulfidation percentage of zinc reached 91.8% under the optimum condition. Besides, it was found that ball-milling was favorable for the separation and recovery of zinc and iron in sulfidation products. After ball-milling pretreatment, iron and zinc were enriched from sulfidation products by magnetic separation and flotation. The grade of iron in magnetic concentrates was 52.3% and the grade of zinc in flotation concentrates was 31.7%, which realized the recovery of resources.
基金Project(2016zzts109)supported by the Innovation Driven Plan of Central South University,ChinaProject(B14034)supported by the National 111 Project,China
文摘This work focuses on the organic depressant,disodium bis(carboxymethyl)trithiocarbonate(DBT),as a selectivedepressant in copper?molybdenum sulfide flotation separation.Micro-flotation,Zeta potential,FTIR and XPS measurements werecarried out to investigate the selective depression mechanism of DBT on chalcopyrite.Zeta potential and FTIR measurementsrevealed that DBT had higher affinity for chalcopyrite than molybdenite and the XPS results of chalcopyrite before and aftertreatment with DBT further proved that DBT adsorbed on chalcopyrite surface.The investigation indicates that the mechanism ofDBT adsorbing on chalcopyrite is mainly physical adsorption.Locked circuit experiments were carried out and the results showedthat DBT could be considered as a cleaner option in commercial Cu?Mo flotation separation circuits.
基金Project(51604131)supported by the National Natural Science Foundation of ChinaProject(2017FB084)supported by the Yunnan Province Applied Basic Research Project,ChinaProject(2018T20150055)supported by the Testing and Analyzing Funds of Kunming University of Science and Technology,China
文摘To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leaching was proposed. Firstly, several factors such as pyrite dosage, roasting temperature, carbon powder dosage, holding time and particle size affecting on the flotation performance of Zn(Pb) and magnetic separation performance of Fe were simultaneously examined and the optimum process parameters were determined. A flotation concentrate, containing 17.46% Zn and 3.93% Pb, was obtained, and the Zn and Pb recoveries were 86.04% and 69.08%, respectively. The obtained flotation tailing was concentrated by a low-intensity magnetic separator. The grade of iron increased from 5.45% to 43.45% and the recovery of iron reached 64.87%. Hydrochloric acid leaching was then carried out for the magnetic separation tailing and a raw quartz concentrate containing 81.05% SiO2 was obtained. To further interpret the sulfidation mechanism of smithsonite, surface morphology and component of the sample before and after reactions were characterized by XRD and EPMA-EDS. The aim was to achieve the comprehensive utilization of the low-grade mining ore.