By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating paramet...By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating parameters of the combined process. The process involved advantages and shortages of SBR and CW. Under normal temperature, the 3rd cycle (SBR’s operation cycle is 8 h: inflow for 1 h, limited aeration for 3 h, sediment for 1 h, outflow for 1 h, and idling for 2 h; CW’s hydraulic retention time (HRT) is 24.8 h and hydraulic loading is 24.5 m3/m2 d) was the best cyclic mode. The effluents can meet the standard GB/T18921-2002: "The reuse of urban recycling water: water quality standard for scenic environment use". In the 3rd cycle, the efficiency of CW was the maximum, and energy consumption of SBR was the minimum. Under the condition of low dissolved oxygen, the removing efficiency of chemical oxygen demand (COD) and ammonia was not affected obviously. Simultaneously, nitrification and denitrification phenomena occured and phosphorus was absorbed obviously.展开更多
In order to improve poly-β-hydroxybutyrate(PHB) production in activated sludge, the anaerobic/aerobic alternative operating sequencing batch reactor(SBR) process was applied in this paper to accumulate PHB. Effec...In order to improve poly-β-hydroxybutyrate(PHB) production in activated sludge, the anaerobic/aerobic alternative operating sequencing batch reactor(SBR) process was applied in this paper to accumulate PHB. Effects of nutritional conditions and carbon concentration on PHB accumulation were studied. Results indicated that PHB accumulation reached the highest level and accounted for 11.2 % under anaerobic condition for phosphate limitation and 20.84 % under aerobic condition for nitrogen and phosphate limitation of mixed liquor suspended solid(MLSS), respectively. In addition, 4 g/L was proved to be the optimum carbon concentration in both anaerobic and aerobic experiments, and the PHB accumulation reached 17.1 %(anaerobic, phosphorus limitation) and 60.4 %(aerobic, nitrogen and phosphorus limitation) of MLSS, respectively. PHB could be successfully extracted with sodium hypochlorite and chloroform method from the activated sludge. In addition, the infrared spectrum showed that the PHB sample extracted was of high purity.展开更多
The effect of high-strength ammonia nitrogen acclimation on sludge activity in sequencing batch reactor (SBR) was investigated. Two batch experiments, RUN1 and RUN2, were conducted with the influent ammonia nitrogen...The effect of high-strength ammonia nitrogen acclimation on sludge activity in sequencing batch reactor (SBR) was investigated. Two batch experiments, RUN1 and RUN2, were conducted with the influent ammonia nitrogen concentrations 60 and 500 mg/L, respectively. The sludges inoculated from RUN1 and RUN2 were used to treat a series of influent with ammonia nitrogen concentrations of 59, 232, 368, 604 and 1152 mg/L. It is found that the activated sludge acclimated to higher ammonia nitrogen concentrations revealed higher COD and NH 4 + -N removal efficiencies, and slower DHA decrease. The results confirmed that the activities of the bacteria in activated sludge in SBR were inhibited by high-strength ammonia nitrogen, whereas the activated sludge acclimated to high-strength ammonia nitrogen showed substantial resistance to inhibition by influents containing high levels of ammonia nitrogen.展开更多
Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules...Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules seeded with activated sludge flocs, those seeded with pellets had shorter start-up time, larger diameter, better chemical oxygen demand removal efficiency, and higher hydrophobicity, suspended solid concentration, and Mg 2+ content. The different inocula led the granule surface with different microbial morphologies, but did not result in different distribution patterns of extracellular polymeric substances and cells. The anaerobic bacterium Anoxybacillus sp. was detected in the granules seeded with pellets. These results highlighted the advantage of pellet over activated sludge floc as the seed for aerobic granulation and wastewater treatment.展开更多
Selenium (Se)-containing industrial wastewater is often coupled with notable salinity. However, limited studies have examined biological treatment of Se-containing wastewater under high salinity conditions. In this st...Selenium (Se)-containing industrial wastewater is often coupled with notable salinity. However, limited studies have examined biological treatment of Se-containing wastewater under high salinity conditions. In this study, a sequencing batch reactor (SBR) inoculated with activated sludge was applied to treat selenate in synthetic saline wastewater (3% w/v NaCl) supplemented with lactate as the carbon source. Start-up of the SBR was performed with addition of 1–5 mM of selenate under oxygen-limiting conditions, which succeeded in removing more than 99% of the soluble Se. Then, the treatment of 1 mM Se with cycle duration of 3 days was carried out under alternating anoxic/oxic conditions by adding aeration period after oxygen-limiting period. Although the SBR maintained soluble Se removal of above 97%, considerable amount of solid Se remained in the effluent as suspended solids and total Se removal fluctuated between about 40 and 80%. Surprisingly, the mass balance calculation found a considerable decrease of Se accumulated in the SBR when the aeration period was prolonged to 7 h, indicating very efficient Se biovolatilization. Furthermore, microbial community analysis suggested that various Se-reducing bacteria coordinately contributed to the removal of Se in the SBR and main contributors varied depending on the operational conditions. This study will offer implications for practical biological treatment of selenium in saline wastewater.展开更多
基金Funded by Sustainable Water Management Improves Tomorrow’s City’s Health (SWITCH018530)
文摘By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating parameters of the combined process. The process involved advantages and shortages of SBR and CW. Under normal temperature, the 3rd cycle (SBR’s operation cycle is 8 h: inflow for 1 h, limited aeration for 3 h, sediment for 1 h, outflow for 1 h, and idling for 2 h; CW’s hydraulic retention time (HRT) is 24.8 h and hydraulic loading is 24.5 m3/m2 d) was the best cyclic mode. The effluents can meet the standard GB/T18921-2002: "The reuse of urban recycling water: water quality standard for scenic environment use". In the 3rd cycle, the efficiency of CW was the maximum, and energy consumption of SBR was the minimum. Under the condition of low dissolved oxygen, the removing efficiency of chemical oxygen demand (COD) and ammonia was not affected obviously. Simultaneously, nitrification and denitrification phenomena occured and phosphorus was absorbed obviously.
基金Funded by the Fundamental Research Funds for the Central Universities(No.2572014CA23)the National Natural Science Foundation of China(No.51678120)
文摘In order to improve poly-β-hydroxybutyrate(PHB) production in activated sludge, the anaerobic/aerobic alternative operating sequencing batch reactor(SBR) process was applied in this paper to accumulate PHB. Effects of nutritional conditions and carbon concentration on PHB accumulation were studied. Results indicated that PHB accumulation reached the highest level and accounted for 11.2 % under anaerobic condition for phosphate limitation and 20.84 % under aerobic condition for nitrogen and phosphate limitation of mixed liquor suspended solid(MLSS), respectively. In addition, 4 g/L was proved to be the optimum carbon concentration in both anaerobic and aerobic experiments, and the PHB accumulation reached 17.1 %(anaerobic, phosphorus limitation) and 60.4 %(aerobic, nitrogen and phosphorus limitation) of MLSS, respectively. PHB could be successfully extracted with sodium hypochlorite and chloroform method from the activated sludge. In addition, the infrared spectrum showed that the PHB sample extracted was of high purity.
基金supported by the Foundation of the Ministry of Education(No.WTWER0702)
文摘The effect of high-strength ammonia nitrogen acclimation on sludge activity in sequencing batch reactor (SBR) was investigated. Two batch experiments, RUN1 and RUN2, were conducted with the influent ammonia nitrogen concentrations 60 and 500 mg/L, respectively. The sludges inoculated from RUN1 and RUN2 were used to treat a series of influent with ammonia nitrogen concentrations of 59, 232, 368, 604 and 1152 mg/L. It is found that the activated sludge acclimated to higher ammonia nitrogen concentrations revealed higher COD and NH 4 + -N removal efficiencies, and slower DHA decrease. The results confirmed that the activities of the bacteria in activated sludge in SBR were inhibited by high-strength ammonia nitrogen, whereas the activated sludge acclimated to high-strength ammonia nitrogen showed substantial resistance to inhibition by influents containing high levels of ammonia nitrogen.
基金supported by the National Natural Science Foundation of China(No.20977066)the National Key Project for Water Pollution Control(No.2008ZX07316-002,2008ZX07317-003)the Specialized Research Fund for Doctoral Program of Higher Education of China(No.200802470029)
文摘Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules seeded with activated sludge flocs, those seeded with pellets had shorter start-up time, larger diameter, better chemical oxygen demand removal efficiency, and higher hydrophobicity, suspended solid concentration, and Mg 2+ content. The different inocula led the granule surface with different microbial morphologies, but did not result in different distribution patterns of extracellular polymeric substances and cells. The anaerobic bacterium Anoxybacillus sp. was detected in the granules seeded with pellets. These results highlighted the advantage of pellet over activated sludge floc as the seed for aerobic granulation and wastewater treatment.
文摘Selenium (Se)-containing industrial wastewater is often coupled with notable salinity. However, limited studies have examined biological treatment of Se-containing wastewater under high salinity conditions. In this study, a sequencing batch reactor (SBR) inoculated with activated sludge was applied to treat selenate in synthetic saline wastewater (3% w/v NaCl) supplemented with lactate as the carbon source. Start-up of the SBR was performed with addition of 1–5 mM of selenate under oxygen-limiting conditions, which succeeded in removing more than 99% of the soluble Se. Then, the treatment of 1 mM Se with cycle duration of 3 days was carried out under alternating anoxic/oxic conditions by adding aeration period after oxygen-limiting period. Although the SBR maintained soluble Se removal of above 97%, considerable amount of solid Se remained in the effluent as suspended solids and total Se removal fluctuated between about 40 and 80%. Surprisingly, the mass balance calculation found a considerable decrease of Se accumulated in the SBR when the aeration period was prolonged to 7 h, indicating very efficient Se biovolatilization. Furthermore, microbial community analysis suggested that various Se-reducing bacteria coordinately contributed to the removal of Se in the SBR and main contributors varied depending on the operational conditions. This study will offer implications for practical biological treatment of selenium in saline wastewater.