期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Hybrid Optimization of Support Vector Machine for Intrusion Detection
1
作者 席福利 郁松年 +1 位作者 HAO Wei 《Journal of Donghua University(English Edition)》 EI CAS 2005年第3期51-56,共6页
Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques.... Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it’s an effective method and can improve the performance of SVM-based intrusion detection system further. 展开更多
关键词 intrusion detection system IDS) support vector machine SVM) genetic algorithm GA system call trace ξα-estimator sequential minimal optimization(smo)
下载PDF
基于Isomap的SMO算法及在煤与瓦斯突出预测中的应用 被引量:3
2
作者 朱莉 谷琼 +1 位作者 蔡之华 余钢 《应用基础与工程科学学报》 EI CSCD 2009年第6期958-965,共8页
煤与瓦斯突出发生的内在机理复杂,突出影响因素与突出事件之间的相关规律具有不确定性、模糊性,使得基于经验的传统预测方法和基于数学建模的统计预测方法的应用受到很大限制.在研究非线性降维等距特征映射和序贯最小优化算法的基础上,... 煤与瓦斯突出发生的内在机理复杂,突出影响因素与突出事件之间的相关规律具有不确定性、模糊性,使得基于经验的传统预测方法和基于数学建模的统计预测方法的应用受到很大限制.在研究非线性降维等距特征映射和序贯最小优化算法的基础上,提出一种基于等距特征映射的煤与瓦斯突出序贯最小优化算法,该方法改进了样本向量之间的距离度量,用测地距离代替传统的欧式距离,有助于挖掘高维数据内在的几何结构.实例验证表明,该算法能可靠预测煤与瓦斯突出的危险性分类,实验进一步将Isomap和主成分分析的降维结果相比较,结果显示Isomap优于传统的线性降维技术,这说明非线性降维技术在地学数据分析中具有一定的应用潜力. 展开更多
关键词 煤与瓦斯突出 等距特征映射 序贯最小优化 支持向量机 主成分分析 分类
下载PDF
求解MEB问题的一种SMO-型方法 被引量:9
3
作者 丛伟杰 刘红卫 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期965-969,共5页
目的求解n维空间中m个点的最小闭包球(MEB)问题。方法基于序列最小优化(SMO)的方法,提出了一种近似算法,求解MEB问题的一个(1+ε)-近似。结果建立了此算法的计算复杂度为O(mn/ε),并且算法最终得到一个独立于m,n的大小为O(1/ε)的核心... 目的求解n维空间中m个点的最小闭包球(MEB)问题。方法基于序列最小优化(SMO)的方法,提出了一种近似算法,求解MEB问题的一个(1+ε)-近似。结果建立了此算法的计算复杂度为O(mn/ε),并且算法最终得到一个独立于m,n的大小为O(1/ε)的核心集。结论数值结果表明对于求解高精度的大规模问题,算法是很有效的。 展开更多
关键词 最小闭包球 序列最小优化 近似算法 计算复杂度 核心集
下载PDF
回归支持向量机SMO算法的改进 被引量:3
4
作者 许建潮 张玉石 《计算机工程与应用》 CSCD 北大核心 2007年第17期74-76,共3页
在Smola和Sch$lkopf的SMO算法中,由于使用了单一的极限值而使得算法的效果没有完全表现出来。使用KKT条件来检验二次规划问题,使用两个极限参量来对回归SMO算法进行改进。通过对比实验,这一改进算法在执行速度上表现出了非常好的性能。
关键词 支持向量机 回归 序列最小优化
下载PDF
加快SMO算法训练速度的策略研究 被引量:4
5
作者 骆世广 骆昌日 《计算机工程与应用》 CSCD 北大核心 2007年第33期184-187,共4页
SMO(序贯最小优化算法)算法是目前解决支持向量机训练问题的一种十分有效的方法,但是当面对大样本数据时,SMO训练速度比较慢。考虑到在SVM的优化过程中并不是所有样本都能影响优化进展,提出了两种删除样本的策略:一种是基于距离,一种是... SMO(序贯最小优化算法)算法是目前解决支持向量机训练问题的一种十分有效的方法,但是当面对大样本数据时,SMO训练速度比较慢。考虑到在SVM的优化过程中并不是所有样本都能影响优化进展,提出了两种删除样本的策略:一种是基于距离,一种是基于拉格朗日乘子的值。在几个著名的数据集的试验结果表明,两种策略都可以大大缩短SMO的训练时间,特别适用于大样本数据。 展开更多
关键词 支持向量机 序贯最小优化算法 SHRINKING
下载PDF
基于SMO算法的织物组织结构识别 被引量:1
6
作者 任海军 孙瑞志 宋强 《计算机工程与设计》 CSCD 北大核心 2009年第22期5178-5181,共4页
提出了一种用机器识别布料结构的方法。该方法采用图像去噪、增强及二值化技术对织物组织图进行预处理,采用经纬像素差值法提取出织物组织结构的特征向量,用序列最小化(SMO)算法进行识别分类,重构出清晰的、便于生产加工的织物组织结构... 提出了一种用机器识别布料结构的方法。该方法采用图像去噪、增强及二值化技术对织物组织图进行预处理,采用经纬像素差值法提取出织物组织结构的特征向量,用序列最小化(SMO)算法进行识别分类,重构出清晰的、便于生产加工的织物组织结构图。实验结果表明,通过该方法对织物组织结构的识别具有较高的准确率。 展开更多
关键词 织物组织结构 模式识别 序列最小化 支持向量机 特征向量
下载PDF
针对大规模样本集的SMO训练策略 被引量:3
7
作者 骆世广 骆昌日 周业明 《广东技术师范学院学报》 2008年第9期30-33,共4页
SMO算法是目前解决支持向量机训练问题的一种十分有效的方法,但是当面对大样本数据时,SMO训练速度十分缓慢。首先,分析了SMO迭代过程中目标函数值的变化情况,进而提出以目标函数值的改变量作为算法终止的判定条件和在SMO迭代后期改变SM... SMO算法是目前解决支持向量机训练问题的一种十分有效的方法,但是当面对大样本数据时,SMO训练速度十分缓慢。首先,分析了SMO迭代过程中目标函数值的变化情况,进而提出以目标函数值的改变量作为算法终止的判定条件和在SMO迭代后期改变SMO的循环条件两种策略。在几个著名的数据集的试验结果表明,该方法可以大大缩短SMO的训练时间,特别适用于大样本数据。 展开更多
关键词 支持向量机 smo 目标函数改变量
下载PDF
求解加权Euclidean单中心问题的SMO-型算法 被引量:2
8
作者 丛伟杰 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第3期403-407,共5页
通过定义求解加权Euclidean单中心(WEOC)问题的两个近似最优性条件,基于序列最小最优化(SMO)方法,提出一种求解WEOC问题的SMO-型算法.该算法求解WEOC问题满足第二个近似最优性条件的(1+ε)-近似解,并且每次迭代只需更新对偶变量的两个分... 通过定义求解加权Euclidean单中心(WEOC)问题的两个近似最优性条件,基于序列最小最优化(SMO)方法,提出一种求解WEOC问题的SMO-型算法.该算法求解WEOC问题满足第二个近似最优性条件的(1+ε)-近似解,并且每次迭代只需更新对偶变量的两个分量.数值结果表明,SMO-型算法执行简单,能有效求解高精度的大规模计算问题. 展开更多
关键词 加权Euclidean单中心 序列最小最优化 最优性条件 近似算法
下载PDF
基于改进SMO算法的热工参数灰色软测量建模
9
作者 乔弘 张全壮 吴蓉 《自动化技术与应用》 2010年第10期4-6,18,共4页
介绍了适宜支持向量机处理大规模数据回归问题的序列最小优化(SMO)学习算法,针对SVR进行二次规划处理大规模数据时计算复杂度高和学习机参数选择方法复杂的问题,从算法结构和参数选择两个方面对SMO算法进行了改进,使运算速度和建模效率... 介绍了适宜支持向量机处理大规模数据回归问题的序列最小优化(SMO)学习算法,针对SVR进行二次规划处理大规模数据时计算复杂度高和学习机参数选择方法复杂的问题,从算法结构和参数选择两个方面对SMO算法进行了改进,使运算速度和建模效率得到了进一步提高。结合灰色理论进行辅助变量选取,并应用改进的SMO算法建立了火电厂烟气含氧量软仪表,通过电厂的实测历史数据仿真表明,改进的算法较传统的SMO算法在计算速度和性能上有较大提高,建立的软仪表模型具有更高的精度,能满足应用要求。 展开更多
关键词 序列最小优化(smo) 灰色关联分析 氧量 软测量
下载PDF
基于SMO的层次型1-FSVM算法 被引量:3
10
作者 左萍平 孙赟 +1 位作者 顾弘 齐冬莲 《计算机工程》 CAS CSCD 北大核心 2010年第19期188-189,192,共3页
针对序贯最小优化(SMO)训练算法具有计算速度快、无内负荷的特点,将其移植到模糊一类支持向量机(1-FSVM)中。1-FSVM算法融入层次型偏二叉树结构进行逐步聚类以加快训练速度,并对每个输入向量赋予不同权值以达到准确的分类效果。应用于... 针对序贯最小优化(SMO)训练算法具有计算速度快、无内负荷的特点,将其移植到模糊一类支持向量机(1-FSVM)中。1-FSVM算法融入层次型偏二叉树结构进行逐步聚类以加快训练速度,并对每个输入向量赋予不同权值以达到准确的分类效果。应用于光识别手写数字集和车牌定位的结果表明,1-FSVM算法具有较高的检测率与较快的检测速度。 展开更多
关键词 模糊一类支持向量机 序贯最小优化 层次型
下载PDF
基于SMO-SVM的单点金刚笔钝化监测
11
作者 岳泰 李郝林 迟玉伦 《中国机械工程》 EI CAS CSCD 北大核心 2015年第20期2733-2739,共7页
针对单点金刚笔在砂轮修整过程中易于钝化且难以检测的问题,使用支持向量机建立智能模型。为了得到建立模型所需的样本库,使用小波包分析等方法在线提取修整时声发射信号中的特征信息,并引入钝化平台直径定义钝化临界值。模型本身选用... 针对单点金刚笔在砂轮修整过程中易于钝化且难以检测的问题,使用支持向量机建立智能模型。为了得到建立模型所需的样本库,使用小波包分析等方法在线提取修整时声发射信号中的特征信息,并引入钝化平台直径定义钝化临界值。模型本身选用基于串行优化算法的支持向量分类机,使用交叉验证法搭配遗传算法以达到优化模型参数的目的。实验结果表明,该模型在分类精度和计算时间上均优于一般的智能模型,可以有效地监测金刚笔的钝化。 展开更多
关键词 单点金刚笔 支持向量分类机 声发射信号 串行优化算法 钝化平台直径
下载PDF
基于不同惩罚系数的SMO改进算法
12
作者 田大东 邓伟 《计算机应用》 CSCD 北大核心 2008年第9期2369-2370,2374,共3页
为了解决Keerthi改进的序贯最小优化(SMO)算法在处理非平衡数据集时,整体分类性能较低、稳定性差等问题,对两个类别施加不同的惩罚系数的方法对算法作进一步改进,同时给出计算公式及算法步骤。实验结果表明,该算法不但提高了处理非平衡... 为了解决Keerthi改进的序贯最小优化(SMO)算法在处理非平衡数据集时,整体分类性能较低、稳定性差等问题,对两个类别施加不同的惩罚系数的方法对算法作进一步改进,同时给出计算公式及算法步骤。实验结果表明,该算法不但提高了处理非平衡数据集的能力,也进一步提高了其稳定性。 展开更多
关键词 非平衡数据集 惩罚系数 序贯最小优化
下载PDF
基于改进停机准则的SMO算法
13
作者 韩顺成 马小晴 +1 位作者 陈进东 潘丰 《计算机工程与应用》 CSCD 2014年第16期31-34,61,共5页
在序列最小优化(Sequential Minimal Optimization,SMO)算法训练过程中,采用标准的KKT(Karush-KuhnTucker)条件作为停机准则会导致训练后期速度下降。由最优化理论可知,当对偶间隙为零时,凸二次优化问题同样可以取得全局最优解。因此本... 在序列最小优化(Sequential Minimal Optimization,SMO)算法训练过程中,采用标准的KKT(Karush-KuhnTucker)条件作为停机准则会导致训练后期速度下降。由最优化理论可知,当对偶间隙为零时,凸二次优化问题同样可以取得全局最优解。因此本文将对偶间隙与标准KKT条件同时作为SMO算法的停机准则,从而提出了改进停机准则的SMO算法。在保证训练精度的情况下,提高了SMO算法的训练速度。通过对一维和二维函数的两个仿真实验,验证了改进SMO算法的有效性。 展开更多
关键词 支持向量机回归 序列最小优化算法 对偶间隙 KKT条件 停机准则
下载PDF
回归支持向量机的改进序列最小优化学习算法 被引量:32
14
作者 张浩然 韩正之 《软件学报》 EI CSCD 北大核心 2003年第12期2006-2013,共8页
支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化... 支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化问题的解析解,设计了新的工作集选择方法和停止条件,仿真实例说明,所提出的SMO算法比原始SMO算法具有更快的运算速度. 展开更多
关键词 支持向量机 核方法 回归 序列最小优化
下载PDF
微博演化网络的负信息分类方法 被引量:13
15
作者 赵一 何克清 +1 位作者 李昭 黄贻望 《计算机科学与探索》 CSCD 北大核心 2017年第1期91-98,共8页
针对Sina微博博文的转发关系,建立起用户转发博文之间的演化网络,从而利用SMO SVM(sequential minimal optimization support vector machine)分类算法对博文进行分类,筛选出恶意博文、垃圾广告、垃圾营销信息,使用户能够精确地屏蔽不... 针对Sina微博博文的转发关系,建立起用户转发博文之间的演化网络,从而利用SMO SVM(sequential minimal optimization support vector machine)分类算法对博文进行分类,筛选出恶意博文、垃圾广告、垃圾营销信息,使用户能够精确地屏蔽不想要的博文和博主。第一步基于微博转发关系的演化网络和SVM分类算法对整个Sina微博进行分类;第二步利用复杂网络等技术对经常发送恶意广告的博主进行标注,从而在网络中对他们进行屏蔽;最后找出垃圾信息的来源以及分辨出博主是不是恶意转发者,在宏观上能更好地遏制垃圾信息的传播。与用户从UCI数据集中实际反馈情况进行比较,实验结果表明,机器学习分类的实验结果吻合度达到89%。 展开更多
关键词 序列最小优化(smo) 支持向量机(SVM) 演化网络 UCI数据集 负信息
下载PDF
一种训练支撑向量机的改进贯序最小优化算法 被引量:25
16
作者 孙剑 郑南宁 张志华 《软件学报》 EI CSCD 北大核心 2002年第10期2007-2013,共7页
对于大规模问题,分解方法是训练支撑向量机主要的一类方法.在很多分类问题中,有相当比例的支撑向量对应的拉格朗日乘子达到惩罚上界,而且在训练过程中到达上界的拉格朗日乘子变化平稳.利用这一统计特性,提出了一种有效的缓存策略来加速... 对于大规模问题,分解方法是训练支撑向量机主要的一类方法.在很多分类问题中,有相当比例的支撑向量对应的拉格朗日乘子达到惩罚上界,而且在训练过程中到达上界的拉格朗日乘子变化平稳.利用这一统计特性,提出了一种有效的缓存策略来加速这类分解方法,并将其具体应用于Platt的贯序最小优化(sequential minimization optimization,简称SMO) 算法中.实验结果表明,改进后的SMO算法的速度是原有算法训练的2~3倍. 展开更多
关键词 支撑向量机 贯序最小优化算法 机器学习 模式分类 二次规划 缓存策略
下载PDF
基于支持向量机的开关磁阻电机转子位置估计 被引量:16
17
作者 夏长亮 贺子鸣 +1 位作者 周亚娜 谢细明 《电工技术学报》 EI CSCD 北大核心 2007年第10期12-17,共6页
开关磁阻电机具有结构简单、工作可靠、效率高和成本较低等优点,在很多领域都显示出强大的竞争力,但是位置传感器的存在不仅削弱了开关磁阻电机结构简单的优势,而且降低了系统高速运行的可靠性,增加了成本。针对这一问题,提出了基于支... 开关磁阻电机具有结构简单、工作可靠、效率高和成本较低等优点,在很多领域都显示出强大的竞争力,但是位置传感器的存在不仅削弱了开关磁阻电机结构简单的优势,而且降低了系统高速运行的可靠性,增加了成本。针对这一问题,提出了基于支持向量机的开关磁阻电机转子位置估计新方法。该方法针对开关磁阻电机的非线性,利用支持向量机泛化能力强以及能够较好地解决小样本学习问题的特点,通过离线学习的方法形成一个理想的支持向量机结构来实现电机电流、磁链与转子位置之间的非线性映射,实现开关磁阻电机的转子位置估计。仿真及实验结果表明,该方法能够实现电机转子位置的准确估计,进而实现开关磁阻电机的无位置传感器控制。 展开更多
关键词 开关磁阻电机 转子位置估计 支持向量机 序列最小优化算法
下载PDF
求解非半正定核Huber-支持向量回归机问题的序列最小最优化算法 被引量:9
18
作者 周晓剑 马义中 +2 位作者 朱嘉钢 刘利平 汪建均 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第9期1178-1184,共7页
序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的... 序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的前提下可使非半正定Huber-SVR能够达到比较理想的回归精度,因而具有一定的理论意义和实用价值. 展开更多
关键词 支持向量机 非半正定核 序列最小最优化算法 Huber-支持向量回归机
下载PDF
基于支持向量机的人民币纸币序列号识别方法 被引量:8
19
作者 李文宏 田文娟 +1 位作者 王霞 骆科学 《信息与控制》 CSCD 北大核心 2010年第4期462-465,471,共5页
实现了人民币图像预处理和序列号识别,主要研究了统计学习理论中支持向量机的次序最小优化算法,并将其构建的支持向量机用于序列号识别,解决了人民币序列号识别中小样本、非线性和高维模式识别问题.实验结果显示,与简单的BP神经网络相比... 实现了人民币图像预处理和序列号识别,主要研究了统计学习理论中支持向量机的次序最小优化算法,并将其构建的支持向量机用于序列号识别,解决了人民币序列号识别中小样本、非线性和高维模式识别问题.实验结果显示,与简单的BP神经网络相比,这种支持向量机货币识别方法具有较高的可实现性和识别精度. 展开更多
关键词 序列号识别 支持向量机 次序最小优化算法
下载PDF
基于边界矩和支持向量机的火焰识别算法 被引量:4
20
作者 韩斌 黄刚 王士同 《计算机应用研究》 CSCD 北大核心 2009年第7期2765-2766,2770,共3页
根据火焰的燃烧特性,结合火焰的空间形状特征和动态变化特征,设计了一种基于动态边界矩和支持向量机的火焰识别算法。利用相邻帧边界矩不变量的差值来描述火焰的动态特征,基于支持向量机对火焰和疑似火焰目标样本进行分类检测。实验表明... 根据火焰的燃烧特性,结合火焰的空间形状特征和动态变化特征,设计了一种基于动态边界矩和支持向量机的火焰识别算法。利用相邻帧边界矩不变量的差值来描述火焰的动态特征,基于支持向量机对火焰和疑似火焰目标样本进行分类检测。实验表明,该算法具有较好的火焰目标识别性能、较低的虚警率和较强的抗干扰性能。 展开更多
关键词 火焰识别 边界矩不变量 支持向量机 序列最小最优化算法
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部