期刊文献+
共找到3,000篇文章
< 1 2 150 >
每页显示 20 50 100
Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer’s disease 被引量:3
1
作者 Jun Chang Yujiao Li +4 位作者 Xiaoqian Shan Xi Chen Xuhe Yan Jianwei Liu Lan Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期619-628,共10页
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime... Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic. 展开更多
关键词 Alzheimer’s disease amyloid-β cell therapy extracellular vesicle neural stem cell synaptic plasticity tau
下载PDF
Wharton’s jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury 被引量:1
2
作者 Prashasti Sharma Dharmendra Kumar Maurya 《World Journal of Stem Cells》 SCIE 2024年第7期742-759,共18页
Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve... Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve and have a better safety profile,making them suitable for both autologous and allogeneic transplantations.This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries.In this review,we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses.Finally,the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled. 展开更多
关键词 stem cells Wharton’s jelly mesenchymal stem cells RADIOTHERAPY XEROsTOMIA Lung fibrosis
下载PDF
Milk fat globule membrane supplementation protects againstβ-lactoglobul-ininduced food allergy in mice via upregulation of regulatory T cells and enhancement of intestinal barrier in a microbiota-derived short-chain fatty acids manner 被引量:1
3
作者 Han Gong Tiange Li +3 位作者 Dong Liang Jingxin Gao Xiaohan Liu Xueying Mao 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期124-136,共13页
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ... Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA. 展开更多
关键词 Cow’s milk allergy Milk fat globule membrane Gut microbiota short-chain fatty acid G protein-coupled receptor Regulatory T cell
下载PDF
Allogeneic mesenchymal stem cells may be a viable treatment modality in cerebral palsy
4
作者 Osman Boyalı Serdar Kabatas +5 位作者 ErdinçCivelek Omer Ozdemir Yeliz Bahar-Ozdemir Necati Kaplan Eyüp Can Savrunlu Erdal Karaöz 《World Journal of Clinical Cases》 SCIE 2024年第9期1585-1596,共12页
BACKGROUND Cerebral palsy(CP)describes a group of disorders affecting movement,balance,and posture.Disturbances in motor functions constitute the main body of CP symptoms.These symptoms surface in early childhood and ... BACKGROUND Cerebral palsy(CP)describes a group of disorders affecting movement,balance,and posture.Disturbances in motor functions constitute the main body of CP symptoms.These symptoms surface in early childhood and patients are affected for the rest of their lives.Currently,treatment involves various pharmacotherapies for different types of CP,including antiepileptics for epilepsy and Botox A for focal spasticity.However,none of these methods can provide full symptom relief.This has prompted researchers to look for new treatment modalities,one of which is mesenchymal stem cell therapy(MSCT).Despite being a promising tool and offering a wide array of possibilities,mesenchymal stem cells(MSCs)still need to be investigated for their efficacy and safety.AIM To analyze the efficacy and safety of MSCT in CP patients.METHODS Our sample consists of four CP patients who cannot stand or walk without external support.All of these cases received allogeneic MSCT six times as 1×106/kg intrathecally,intravenously,and intramuscularly using umbilical cord-derived MSCs(UC-MSC).We monitored and assessed the patients pre-and post-treatment using the Wee Functional Independence Measure(WeeFIM),Gross Motor Function Classification System(GMFCS),and Manual Ability Classification Scale(MACS)instruments.We utilized the Modified Ashworth Scale(MAS)to measure spasticity.RESULTS We found significant improvements in MAS scores after the intervention on both sides.Two months:Rightχ^(2)=4000,P=0.046,leftχ^(2)=4000,P=0.046;four months:Rightχ^(2)=4000,P=0.046,leftχ^(2)=4000,P=0.046;12 months:Rightχ^(2)=4000,P=0.046,leftχ^(2)=4000,P=0.046.However,there was no significant difference in motor functions based on WeeFIM results(P>0.05).GMFCS and MACS scores differed significantly at 12 months after the intervention(P=0.046,P=0.046).Finally,there was no significant change in cognitive functions(P>0.05).CONCLUSION In light of our findings,we believe that UC-MSC therapy has a positive effect on spasticity,and it partially improves motor functions. 展开更多
关键词 Cerebral palsy Mesenchymal stem cell TRANsPLANTATION Wharton’s jelly Muscle spasticity
下载PDF
Potential plausible role of Wharton’s jelly mesenchymal stem cells for diabetic bone regeneration
5
作者 Sheng Zheng Guan-Yu Hu +1 位作者 Jun-Hua Li Yi-Kai Li 《World Journal of Stem Cells》 SCIE 2024年第8期824-826,共3页
This letter addresses the review titled“Wharton’s jelly mesenchymal stem cells:Future regenerative medicine for clinical applications in mitigation of radiation injury”.The review highlights the regenerative potent... This letter addresses the review titled“Wharton’s jelly mesenchymal stem cells:Future regenerative medicine for clinical applications in mitigation of radiation injury”.The review highlights the regenerative potential of Wharton’s jelly mesenchymal stem cells(WJ-MSCs)and describes why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine.The potential plausible role of WJ-MSCs for diabetic bone regeneration should be noticeable,which will provide a new strategy for improving bone regeneration under diabetic conditions. 展开更多
关键词 Wharton’s jelly mesenchymal stem cells Vascular endothelial growth factor OsTEOGENEsIs ANGIOGENEsIs Diabetic bone regeneration
下载PDF
Future directions:combination of acupuncture with mesenchymal stem cells for Parkinson’s disease
6
作者 Shan Zhong Song-Zhe He Xi-Lin Wang 《Integrative Medicine Discovery》 2024年第23期1-6,共6页
Parkinson’s disease(PD)is a progressive chronic disease currently with no radical cure drugs and means due to the complex pathological mechanisms and limited regenerative capacity of neurons.Acupuncture aids in neuro... Parkinson’s disease(PD)is a progressive chronic disease currently with no radical cure drugs and means due to the complex pathological mechanisms and limited regenerative capacity of neurons.Acupuncture aids in neuronal regeneration via various signaling routes like ROCK,Wnt,and Notch,safeguarding dopaminergic neurons against inflammation,oxidative stress,and cell death,which in turn enhances the progression of PD progression.Numerous research findings indicate that integrating acupuncture with mesenchymal stem cells(MSCs)transplantation is more effective than using either acupuncture or MSCs infusion alone.The combined treatment improves the survival rate of MSCs,promotes the generation of functional neural networks by stimulating the secretion of neurotrophic factors,and ultimately improves the disease microenvironment.In this review,we state the neuroprotective effects of acupuncture or MSCs treament alone in PD,then summarize the application of acupuncture combined with MSCs therapy in other diseases.Consequently,we anticipate that integrating acupuncture with MSCs transplantation may emerge as a novel and efficient approach for managing PD.This possibility needs to be verified through further basic and clinical research. 展开更多
关键词 Parkinson’s disease ACUPUNCTURE mesenchymal stem cells dopaminergic neuron THERAPY
下载PDF
In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells
7
作者 Quanzhen Sun Yifan Li +6 位作者 Caixia Zhang Shunli Du Weihao Xie Jionghua Wu Qiao Zheng Hui Deng Shuying Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期10-17,I0002,共9页
Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface... Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface and passivate deep level defects in CZTSSe bulk concurrently for improving the performance of flexible device.The results show that In doping effectively inhibits the formation of secondary phase(Cu(S,Se)_(2))and VSndefects.Further studies demonstrate that the barrier height at the back interface is decreased and the deep level defects(Cu_(Sn)defects)in CZTSSe bulk are passivated.Moreover,the carrier concentration is increased and the V_(OC) deficit(V_(OC,def))is decreased significantly due to In doping.Finally,the flexible CZTSSe solar cell with 10.01%power conversion efficiency(PCE)has been obtained.The synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new thought for the fabrication of efficient flexible kesterite-based solar cells. 展开更多
关键词 Flexible solar cells Cu_(2)Znsn(s se)_(4) Back interface Deep level defects Barrier height
下载PDF
Gamma-glutamyl transferase 5 overexpression in cerebrovascular endothelial cells improves brain pathology,cognition,and behavior in APP/PS1 mice
8
作者 Yanli Zhang Tian Li +8 位作者 Jie Miao Zhina Zhang Mingxuan Yang Zhuoran Wang Bo Yang Jiawei Zhang Haiting Li Qiang Su Junhong Guo 《Neural Regeneration Research》 SCIE CAS 2025年第2期533-547,共15页
In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of A... In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease amyloid-β APP/Ps1 mice cerebrovascular endothelial cells cognitive deficits gamma-glutamyl transferase 5 neurovascular unit nuclear factor‐kappa B synaptic plasticity β-site APP cleaving enzyme 1
下载PDF
Heat exposure promotes apoptosis and pyroptosis in Sertoli cells
9
作者 CHEN WANG CHAOFAN HE +2 位作者 YUANYUAN GAO KAIXIAN WANG MENG LIANG 《BIOCELL》 SCIE 2023年第1期155-164,共10页
Heat stress is an important influence on the male reproductive organs.Therefore,the effects of heat stress on genes or pathways related to the reproductive system of male mice were experimentally explored in this pape... Heat stress is an important influence on the male reproductive organs.Therefore,the effects of heat stress on genes or pathways related to the reproductive system of male mice were experimentally explored in this paper to further determine the effects of heat stimulation on mammals.Herein,models of heat-exposed mouse testicular tissue and heatexcited cells were successfully established.Many scorched vesicles were found after heat excitation of testis supporting cells,testicular mesenchymal(TM4)cells.Western blot,in situ terminal deoxynucleotide transferase dUTP Nick end labeling(TUNEL)and transmission electron microscopy showed that membrane rupture,mitochondrial damage and autophagic vesicles occurred in TM4 cells after thermal excitation.The N-segment fragment of the associated protein shear was increased,and the TUNEL result was positive.In conclusion,thermal excitation induced apoptosis and scorch death in TM4 cells.Thus,the Hippo pathway and apoptosis-related pathway were significantly enriched after heat stimulation in mouse testis,and the scorch death effect in TM4 cells was induced by heat excitation. 展开更多
关键词 Heat shock Hippo pathway sertoli cells APOPTOsIs PYROPTOsIs
下载PDF
The effects of hormone-mediated PI3K/AKT signaling on spermatogenesis in Sertoli cells
10
作者 YANSHUANG ZHAO WANXI YANG 《BIOCELL》 SCIE 2023年第8期1709-1725,共17页
The phosphoinositide-3-kinase/Akt(PI3K/AKT)signaling pathway is crucial for Sertoli cell development and completing spermatogenesis.Its main role is to promote proliferation and inhibit apoptosis.Many factors activate... The phosphoinositide-3-kinase/Akt(PI3K/AKT)signaling pathway is crucial for Sertoli cell development and completing spermatogenesis.Its main role is to promote proliferation and inhibit apoptosis.Many factors activate the PI3K/AKT pathway,like hormones,such as follicle stimulating hormone(FSH),androgen,estrogen,insulin to name a few.Many of these factors have receptors inside or on the surface of Sertoli cells(SCs).This review summarizes how these hormones directly regulate the PI3K/AKT signaling pathway in SCs,which in turn affects SC proliferation and differentiation.Further,hormone-mediated PI3K/AKT signaling also stimulates SC secretion,which is essential for germ cell development,suggesting an indirect role of PI3K/AKT signaling during spermatogenesis.These functions include promoting spermatogonia proliferation and differentiation,meiosis of spermatocytes,sperm maturation,and their release.This review also provides potential hints for clinically treating male infertility issues like cryptorchidism and Sertoli cell-only syndrome. 展开更多
关键词 HORMONE PI3K/AKT signaling sPERMATOGENEsIs sertoli cell secretion Male infertility
下载PDF
Cell reprogramming therapy for Parkinson’s disease 被引量:5
11
作者 Wenjing Dong Shuyi Liu +1 位作者 Shangang Li Zhengbo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2444-2455,共12页
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ... Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease. 展开更多
关键词 animal models AsTROCYTEs AUTOLOGOUs cell reprogramming cell therapy direct lineage reprogramming dopaminergic neurons induced pluripotent stem cells non-human primates Parkinson’s disease
下载PDF
Effects of mesenchymal stem cell on dopaminergic neurons,motor and memory functions in animal models of Parkinson's disease:a systematic review and meta-analysis 被引量:4
12
作者 Jong Mi Park Masoud Rahmati +2 位作者 Sang Chul Lee Jae Il Shin Yong Wook Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1584-1592,共9页
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ... Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols. 展开更多
关键词 ANIMAL animal experimentation mesenchymal stem cells models Parkinson’s disease stem cell transplantation
下载PDF
One-step cell biomanufacturing platform:porous gelatin microcarrier beads promote human embryonic stem cell-derived midbrain dopaminergic progenitor cell differentiation in vitro and survival after transplantation in vivo 被引量:1
13
作者 Lin Feng Da Li +10 位作者 Yao Tian Chengshun Zhao Yun Sun Xiaolong Kou Jun Wu Liu Wang Qi Gu Wei Li Jie Hao Baoyang Hu Yukai Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期458-464,共7页
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p... Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation. 展开更多
关键词 axonal integrity cell cryopreservation cellular environment cellular niche cell replacement therapy dopaminergic progenitors human pluripotent stem cell mechanical damage neuronal cell delivery Parkinson’s disease small-aperture gelatin microcarriers
下载PDF
Applications of single-cell RNA sequencing in spermatogenesis and molecular evolution
14
作者 Wen-Bo Chen Meng-Fei Zhang +1 位作者 Fan Yang Jin-Lian Hua 《Zoological Research》 SCIE CSCD 2024年第3期575-585,共11页
Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and ... Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis. 展开更多
关键词 single-cell RNA sequencing(scRNA-seq) sPERMATOGENEsIs Molecular evolution sertoli cell
下载PDF
Neural progenitor cells derived from fibroblasts induced by small molecule compounds under hypoxia for treatment of Parkinson’s disease in rats 被引量:4
15
作者 Yu Guo Yuan-Yuan Wang +7 位作者 Ting-Ting Sun Jia-Jia Xu Pan Yang Cai-Yun Ma Wei-Jun Guan Chun-Jing Wang Gao-Feng Liu Chang-Qing Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1090-1098,共9页
Neural progenitor cells(NPCs) capable of self-renewal and differentiation into neural cell lineages offer broad prospects for cell therapy for neurodegenerative diseases. However, cell therapy based on NPC transplanta... Neural progenitor cells(NPCs) capable of self-renewal and differentiation into neural cell lineages offer broad prospects for cell therapy for neurodegenerative diseases. However, cell therapy based on NPC transplantation is limited by the inability to acquire sufficient quantities of NPCs. Previous studies have found that a chemical cocktail of valproic acid, CHIR99021, and Repsox(VCR) promotes mouse fibroblasts to differentiate into NPCs under hypoxic conditions. Therefore, we used VCR(0.5 mM valproic acid, 3 μM CHIR99021, and 1 μM Repsox) to induce the reprogramming of rat embryonic fibroblasts into NPCs under a hypoxic condition(5%). These NPCs exhibited typical neurosphere-like structures that can express NPC markers, such as Nestin, SRY-box transcription factor 2, and paired box 6(Pax6), and could also differentiate into multiple types of functional neurons and astrocytes in vitro. They had similar gene expression profiles to those of rat brain-derived neural stem cells. Subsequently, the chemically-induced NPCs(ciNPCs) were stereotactically transplanted into the substantia nigra of 6-hydroxydopamine-lesioned parkinsonian rats. We found that the ciNPCs exhibited long-term survival, migrated long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Moreover, the parkinsonian behavioral defects of the parkinsonian model rats grafted with ciNPCs showed remarkable functional recovery. These findings suggest that rat fibroblasts can be directly transformed into NPCs using a chemical cocktail of VCR without introducing exogenous factors, which may be an attractive donor material for transplantation therapy for Parkinson’s disease. 展开更多
关键词 cell reprogramming cell transplantation HYPOXIA neural progenitor cells neurological function Parkinson’s disease small molecule compounds substantia nigra
下载PDF
Exosomes derived from human umbilical cord mesenchymal stem cells alleviate Parkinson’s disease and neuronal damage through inhibition of microglia 被引量:8
16
作者 Zhong-Xia Zhang Yong-Jie Zhou +11 位作者 Ping Gu Wei Zhao Hong-Xu Chen Ruo-Yu Wu Lu-Yang Zhou Qing-Zhuo Cui Shao-Kang Sun Lin-Qi Zhang Ke Zhang Hong-Jun Xu Xi-Qing Chai Sheng-Jun An 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2291-2300,共10页
Microglia-mediated inflammatory responses have been shown to play a crucial role in Parkinson’s disease. In addition, exosomes derived from mesenchymal stem cells have shown anti-inflammatory effects in the treatment... Microglia-mediated inflammatory responses have been shown to play a crucial role in Parkinson’s disease. In addition, exosomes derived from mesenchymal stem cells have shown anti-inflammatory effects in the treatment of a variety of diseases. However, whether they can protect neurons in Parkinson’s disease by inhibiting microglia-mediated inflammatory responses is not yet known. In this study, exosomes were isolated from human umbilical cord mesenchymal stem cells and injected into a 6-hydroxydopamine-induced rat model of Parkinson’s disease. We found that the exosomes injected through the tail vein and lateral ventricle were absorbed by dopaminergic neurons and microglia on the affected side of the brain, where they repaired nigral-striatal dopamine system damage and inhibited microglial activation. Furthermore, in an in vitro cell model, pretreating lipopolysaccharide-stimulated BV2 cells with exosomes reduced interleukin-1β and interleukin-18 secretion, prevented the adoption of pyroptosis-associated morphology by BV2 cells, and increased the survival rate of SH-SY5Y cells. Potential targets for treatment with human umbilical cord mesenchymal stem cells and exosomes were further identified by high-throughput microRNA sequencing and protein spectrum sequencing. Our findings suggest that human umbilical cord mesenchymal stem cells and exosomes are a potential treatment for Parkinson’s disease, and that their neuroprotective effects may be mediated by inhibition of excessive microglial proliferation. 展开更多
关键词 6-HYDROXYDOPAMINE dopamine neurons EXOsOMEs inflammation mesenchymal stem cells MICROGLIA Parkinson’s disease PYROPTOsIs
下载PDF
Aqueous Extract of Ceiba pentandra Stimulates the Production of Fetal Hemoglobin in Sickle Cell Patients
17
作者 Marie Miezi Nsimba Magain Barihuta Mihatano +4 位作者 Blaise Maya Mbamu Aline Diza Lubongo Thoms Nzaji Kolombo Josué Matadi Mukengeshaie José Nzunzu Lami 《Journal of Biosciences and Medicines》 2024年第8期295-306,共12页
Subsequent studies have demonstrated the reversed activity of the aqueous extract of Ceiba pentandra on the deformity of sickled red blood cells in hypoxia conditions. The observation which related to an in vitro stud... Subsequent studies have demonstrated the reversed activity of the aqueous extract of Ceiba pentandra on the deformity of sickled red blood cells in hypoxia conditions. The observation which related to an in vitro study had given rise to hopes as to the management of sickle cell disease (SCD) by the use of this plant species. In this paper, the authors aimed to investigate the effect of the aqueous extract of C. pentandra on the production of fetal hemoglobin in SCD patients. The work carried out hemoglobin electrophoresis, for a period of six months, on blood samples from SCD patients who voluntarily undergone routine treatment, based on the medicinal recipe prepared from the bark of the trunk and branches of C. pentandra, in a hospital center of herbal medicines located in Kinshasa. The medicinal recipe called BEAT-SS is a patented product of the hospital center named Centre de Phytothérapie Moderne NIECA. Blood samples from patients under treatment were taken to evaluate the behavior of different forms of hemoglobin (hemoglobin S, hemoglobin F and hemoglobin A2). Agarose gel electrophoresis with integrated reading was used for the separation of the different forms of hemoglobin, as well as their dosage on each sample of sickle blood. A reduction in the proportion of hemoglobin S and an increase in the proportion of fetal hemoglobin were found in all sickle cell patients during the treatment period. This observation could affirm that the management of sickle cell patients using the recipe prepared from the aqueous extract of C. pentandra could increase the level of fetal hemoglobin in these patients. 展开更多
关键词 sickle cell Disease Hemoglobin s Fetal Hemoglobin Ceiba pentandra
下载PDF
Long-term outcome of stem cell transplantation with and without anti-tumor necrotic factor therapy in perianal fistula with Crohn’s disease
18
作者 Min Young Park Yong Sik Yoon +2 位作者 Jae Ha Park Jong Lyul Lee Chang Sik Yu 《World Journal of Stem Cells》 SCIE 2024年第3期257-266,共10页
BACKGROUND Stem cell transplantation is a promising therapeutic option for curing perianal fistula in Crohn’s disease(CD).Anti-tumor necrotic factor(TNF)therapy combined with drainage procedure is effective as well.H... BACKGROUND Stem cell transplantation is a promising therapeutic option for curing perianal fistula in Crohn’s disease(CD).Anti-tumor necrotic factor(TNF)therapy combined with drainage procedure is effective as well.However,previous studies are limited to proving whether the combination treatment of biologics and stem cell transplantation improves the effect of fistula closure.AIM This study aimed to evaluate the long-term outcomes of stem cell transplantation and compare Crohn’s perianal fistula(CPF)closure rates after stem cell transplantation with and without anti-TNF therapy,and to identify the factors affecting CPF closure and recurrence.METHODS The patients with CD who underwent stem cell transplantation for treating perianal fistula in our institution between Jun 2014 and December 2022 were enrolled.Clinical data were compared according to anti-TNF therapy and CPF closure.RESULTS A total of 65 patients were included.The median age of females was 26 years(range:21-31)and that of males was 29(44.6%).The mean follow-up duration was 65.88±32.65 months,and complete closure was observed in 50(76.9%)patients.The closure rates were similar after stem cell transplantation with and without anti-TNF therapy(66.7%vs 81.6%at 3 year,P=0.098).The patients with fistula closure had short fistulous tract and infrequent proctitis and anorectal stricture(P=0.027,0.002,and 0.008,respectively).Clinical factors such as complexity,number of fistulas,presence of concurrent abscess,and medication were not significant for closure.The cumulative 1-,2-,and 3-year closure rates were 66.2%,73.8%,and 75.4%,respectively.CONCLUSION Anti-TNF therapy does not increase CPF closure rates in patients with stem cell transplantation.However,both refractory and non-refractory CPF have similar closure rates after additional anti-TNF therapy.Fistulous tract length,proctitis,and anal stricture are risk factors for non-closure in patients with CPF after stem cell transplantation. 展开更多
关键词 Crohn’s disease ANUs FIsTULA stem cell transplantation Tumor necrosis factor-alpha inhibitors INFLIXIMAB
下载PDF
卵巢Sertoli-Leydig细胞瘤临床病理特征分析(附5例)
19
作者 方婉婷 明健 +1 位作者 孟英爽 商家炜 《现代肿瘤医学》 CAS 2024年第16期3072-3077,共6页
目的:分析卵巢Sertoli-Leydig细胞瘤(Sertoli-Leydig cell tumor, SLCT)临床病理特征。方法:报道5例卵巢sertoli-Leydig细胞瘤,总结其镜下表现,免疫组化特点,并复习文献。结果:5例卵巢Sertoli-Leydig细胞瘤,2例低分化,其余3例为高分化,... 目的:分析卵巢Sertoli-Leydig细胞瘤(Sertoli-Leydig cell tumor, SLCT)临床病理特征。方法:报道5例卵巢sertoli-Leydig细胞瘤,总结其镜下表现,免疫组化特点,并复习文献。结果:5例卵巢Sertoli-Leydig细胞瘤,2例低分化,其余3例为高分化,中分化和网状型。Sertoli细胞,表达α-inhibin、Calretinin、WT-1,Leydig细胞α-inhibin、Claretinin表达比Sertoli细胞强,还可表达Melan-A。结论:卵巢Sertoli-Leydig细胞瘤是一种罕见的卵巢肿瘤,其形态丰富要注意和许多疾病鉴别诊断,病理医生应充分了解其病理特征避免出现误诊和漏诊。 展开更多
关键词 sertoli-Leydig细胞瘤 免疫组化 鉴别诊断
下载PDF
Neural stem cells for Parkinson’s disease management:Challenges,nanobased support,and prospects 被引量:1
20
作者 Tuba Oz Ajeet Kaushik Małgorzata Kujawska 《World Journal of Stem Cells》 SCIE 2023年第7期687-700,共14页
Parkinson’s disease(PD),characterized by loss of nigrostriatal dopaminergic neurons,is one of the most predominant neurodegenerative diseases affecting the elderly population worldwide.The concept of stem cell therap... Parkinson’s disease(PD),characterized by loss of nigrostriatal dopaminergic neurons,is one of the most predominant neurodegenerative diseases affecting the elderly population worldwide.The concept of stem cell therapy in managing neurodegenerative diseases has evolved over the years and has recently rapidly progressed.Neural stem cells(NSCs)have a few key features,including selfrenewal,proliferation,and multipotency,which make them a promising agent targeting neurodegeneration.It is generally agreed that challenges for NSC-based therapy are present at every stage of the transplantation process,including preoperative cell preparation and quality control,perioperative procedures,and postoperative graft preservation,adherence,and overall therapy success.In this review,we provided a comprehensive,careful,and critical discussion of experimental and clinical data alongside the pros and cons of NSC-based therapy in PD.Given the state-of-the-art accomplishments of stem cell therapy,gene therapy,and nanotechnology,we shed light on the perspective of complementing the advantages of each process by developing nano-stem cell therapy,which is currently a research hotspot.Although various obstacles and challenges remain,nano-stem cell therapy holds promise to cure PD,however,continuous improvement and development from the stage of laboratory experiments to the clinical application are necessary. 展开更多
关键词 Parkinson’s disease sYNUCLEIN Neural stem cells NANOMATERIALs Nano-stem cell therapy
下载PDF
上一页 1 2 150 下一页 到第
使用帮助 返回顶部