Emerging evidence indicates that sleep deprivation(SD)can lead to Alzheimer’s disease(AD)-related pathological changes and cognitive decline.However,the underlying mechanisms remain obscure.In the present study,we id...Emerging evidence indicates that sleep deprivation(SD)can lead to Alzheimer’s disease(AD)-related pathological changes and cognitive decline.However,the underlying mechanisms remain obscure.In the present study,we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD.Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis,elevated NLRP3 inflammasome expression,GSK-3βactivation,autophagy dysfunction,and tau hyperphosphorylation in the hippocampus.Colonization with the“SD microbiota”replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice.Remarkably,both the deletion of NLRP3 in NLRP3-/-mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux,suppressed tau hyperphosphorylation,and ameliorated cognitive deficits induced by chronic SD,while GSK-3βactivity was not regulated by the NLRP3 inflammasome in chronic SD.Notably,deletion of NLRP3 reversed NLRP3 inflammasome activation,autophagy deficits,and tau hyperphosphorylation induced by GSK-3βactivation in primary hippocampal neurons,suggesting that GSK-3β,as a regulator of NLRP3-mediated autophagy dysfunction,plays a significant role in promoting tau hyperphosphorylation.Thus,gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction,ultimately leading to cognitive deficits.Overall,these findings highlight GSK-3βas a regulator of NLRP3-mediated autophagy dysfunction,playing a critical role in promoting tau hyperphosphorylation.展开更多
The posttreatment period is a key part of the management of pediatric cancer.During this time,school and psychological difficulties have been described in childhood cancer survivors(CCS)and can be prognostic for the s...The posttreatment period is a key part of the management of pediatric cancer.During this time,school and psychological difficulties have been described in childhood cancer survivors(CCS)and can be prognostic for the success of social reintegration.This study estimated the influence of the household’s socioeconomic status(SES)on these psychosocial difficulties.This study is based on a prospective multicentric database and focused on children who received a psychosocial evaluation during their follow-up from 2013 to 2020.We retrieved data on school and psychological difficulties.Household SES was estimated by a social deprivation score.Data from1003 patients were analyzed.School difficulties were noted in 22%of CCS.A greater social deprivation was significantly associated with school difficulty.Tumor relapse,treatment with hematopoietic stem cell transplantation,and central nervous system(CNS)tumors remained significant risk factors.In the subgroup of CNS tumors,school difficulties were increased and associated with greater social deprivation.Psychological difficulties were not associated with the deprivation score.There is a link between SES and school difficulties in CCS.Further investigations should be carried out for children with CNS tumors,which is the population of the greatest concern.展开更多
BACKGROUND Sleep deprivation is a prevalent issue that impacts cognitive function.Although numerous neuroimaging studies have explored the neural correlates of sleep loss,inconsistencies persist in the reported result...BACKGROUND Sleep deprivation is a prevalent issue that impacts cognitive function.Although numerous neuroimaging studies have explored the neural correlates of sleep loss,inconsistencies persist in the reported results,necessitating an investigation into the consistent brain functional changes resulting from sleep loss.AIM To establish the consistency of brain functional alterations associated with sleep deprivation through systematic searches of neuroimaging databases.Two metaanalytic methods,signed differential mapping(SDM)and activation likelihood estimation(ALE),were employed to analyze functional magnetic resonance imaging(fMRI)data.METHODS A systematic search performed according to PRISMA guidelines was conducted across multiple databases through July 29,2023.Studies that met specific inclusion criteria,focused on healthy subjects with acute sleep deprivation and reported whole-brain functional data in English were considered.A total of 21 studies were selected for SDM and ALE meta-analyses.RESULTS Twenty-one studies,including 23 experiments and 498 subjects,were included.Compared to pre-sleep deprivation,post-sleep deprivation brain function was associated with increased gray matter in the right corpus callosum and decreased activity in the left medial frontal gyrus and left inferior parietal lobule.SDM revealed increased brain functional activity in the left striatum and right central posterior gyrus and decreased activity in the right cerebellar gyrus,left middle frontal gyrus,corpus callosum,and right cuneus.CONCLUSION This meta-analysis consistently identified brain regions affected by sleep deprivation,notably the left medial frontal gyrus and corpus callosum,shedding light on the neuropathology of sleep deprivation and offering insights into its neurological impact.展开更多
Objective To observe the effect of application of garlic paste at Shenque (神阙 CV8) on the circadian rhythm in sleep deprivation young students. Metheds Twenty healthy volunteer young male students from Southern Me...Objective To observe the effect of application of garlic paste at Shenque (神阙 CV8) on the circadian rhythm in sleep deprivation young students. Metheds Twenty healthy volunteer young male students from Southern Medical University were randomly divided into three groups: normal group (A), sleep deprivation group (B) and treatment group (C). Volunteers in group B and C received 48 h sleep deprivation (SD), and in the mean time volunteers in group C were treated by garlic paste at Shenque (神阙 CV8), while those in group A had no any treatment. The body temperature of all the volunteers was detected at 6:00 am, 12:00 am, 6:00 pm and 0:00 am, respectively, after the treatment. Results The mean body temperature values in group A and C both were highest at 6: 00 pm and lowest at 6: 00 am which had a significant difference in each group (P〈0.01); in group B, the mean body temperature was highest at 0:00 am and lowestat 6:00 am, no significant difference was found between them (P〉0.05). Results of cosine analysis showed that in subjects of group B the circadian rhythm of body temperature still kept going well after SD, but the peak amplitude and amplitude of vibration were higher than those of group A, and the acrophase of group B was obviously lower than that of group C and A. The 3 indexes of group C were similar to those of group A, denoting that garlic paste application of Shenque (神阙 CV8) could prevent disorders of circadian rhythm of the body temperature. Conclusion The garlic paste application at Shenque (神阙 CV8) can adjust circadian rhythm and accelerate the recovery processes of circadian rhythm in SD young students.展开更多
Oxygen/glucose deprivation (OGD) has been widely used as an in vitro model of focal ischemia, where the blood flow is severely reduced and neurons rapidly die. However, adjacent to the focal region is ‘penumbra', ...Oxygen/glucose deprivation (OGD) has been widely used as an in vitro model of focal ischemia, where the blood flow is severely reduced and neurons rapidly die. However, adjacent to the focal region is ‘penumbra', where residual blood flow remains oxygen and glucose supplies are at low levels. To model this pathological genesis, we developed a partial OGD (pOGD) protocol in a rat brain slice. This model met two requirements: oxygen was partially deprived and glucose was reduced in the perfusion buffer. Therefore we investigated the effect of pOGD on gama-aminobutyric acid (GABAA) receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 neurons of a hippocampal slice through whole-cell patch-clamp technique. We found that the amplitude and decay time of IPSCs were increased immediately during pOGD treatment. And the enhancement of IPSCs amplitude resulted from an increase of the synaptic conductance without a significant change in the reversal potential of chloride. These results suggested that the nervous system could increase inhibitory neurotransmission to offset excitation by homeostasis mechanisms during the partial oxygen and glucose attack.展开更多
Objective:To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat,and visual development plastic stage and visual plasticity in adult rats.Methods:A ...Objective:To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat,and visual development plastic stage and visual plasticity in adult rats.Methods:A total of 60 SD rats ages 13 d were randomly divided into A,B,C three groups with 20 in each group,group A was set as the normal control group without any processing,group B was strabismus amblyopic group,using the unilateral extraocular rectus resection to establish the strabismus amblyopia model,group C was monocular form deprivation amblyopia group using unilateral eyelid edge resection+lid suture.At visual developmental early phase(P2S),meta phase(P3S),late phase(P45)and adult phase(P120),the lateral geniculate body and visual cortex area 17 of five rats in each group were exacted for C-fos Immunocytochemistry.Neuron morphological changes in lateral geniculate body and visual cortex was observed,the positive neurons differences of C-fos expression induced by light stimulation was measured in each group,and the condition of radiation development of P120 amblyopic adult rats was observed.Results:In groups B and C,C-fos positive cells were significantly lower than the control group at P25(P<0.05),there was no statistical difference of C-fos protein positive cells between group B and group A(P>0.05),C-fos protein positive cells level of group B was significantly lower than that of group A(P<0.05).The binoculus C-fos protein positive cells level of groups B and C were significantly higher than that of control group at P35,P4S and P120 with statistically significant differences(P<0.05).Conclusions:The increasing of C-fos expression in geniculate body and visual cortex neurons of adult amblyopia suggests the visual cortex neurons exist a certain degree of visual plasticity.展开更多
Androgen deprivation therapy (ADT) has been associated with a plethora of adverse effects, consistent with the androgen dependency of multiple reproductive and somatic tissues. One such tissue is the hemopoietic sys...Androgen deprivation therapy (ADT) has been associated with a plethora of adverse effects, consistent with the androgen dependency of multiple reproductive and somatic tissues. One such tissue is the hemopoietic system, and one of the most predictable consequences of ADT is the development of anemia. Although anemia caused by ADT is rarely severe, ADT is often given to frail, elderly men with increased susceptibility to anemia due to multiple other causes. ADT-associated anemia may contribute to fatigue and reduced quality of life (QoL) in such men, although this requires further study. While anemia is an independent risk factor of mortality in men with prostate cancer, it is not known whether treatment of ADT-associated anemia alters clinically important outcomes, or whether treatment affects mortality. Awareness of the phenomenon of ADT-induced anemia should avoid unnecessary work-up in mild cases of normocytic normochromic anemia. However, assessment and treatment of more severe anemia may be required. This should be determined on an individual basis. In contrast to the weli-descrihed actions of ADT on erythropoiesis, its effect on other hemopoietic lineages has been less well elucidated. While preclinical studies have found roles for androgens in maturation and differentiated function of neutrophils, lymphocytes and platelets, the implications of these findings for men with prostate cancer receiving ADT require further studies.展开更多
Androgens play a prominent role in the development, maintenance and progression of prostate cancer. The introduction of androgen deprivation therapies into the treatment paradigm for prostate cancer patients has resul...Androgens play a prominent role in the development, maintenance and progression of prostate cancer. The introduction of androgen deprivation therapies into the treatment paradigm for prostate cancer patients has resulted in a wide variety of benefits ranging from a survival advantage for those with clinically localized or locally advanced disease, to improvements in symptom control for patients with advanced disease. Controversies remain, however, surrounding the optimal timing, duration and schedule of these hormonal approaches. Newer hormonal manipulations such as abiraterone acetate have also been investigated and will broaden treatment options for men with prostate cancer, This review highlights the various androgen-directed treatment options available to men with prostate cancer, their specific indications and the evidence supporting each approach, as well as patterns of use of hormonal therapies.展开更多
Aim: To evaluate the effect of androgen deprivation therapy (ADT) on bone mineral density (BMD) in prostate cancer patients. Methods: Forty-nine prostate cancer patients with their BMD determined were divided into two...Aim: To evaluate the effect of androgen deprivation therapy (ADT) on bone mineral density (BMD) in prostate cancer patients. Methods: Forty-nine prostate cancer patients with their BMD determined were divided into two groups: the non-treated group included 21 patients before the commencement of ADT and the treated group, 28 patients, who had received ADT for more than 1 year. BMD was measured by dual energy X-ray absorptiometry (DEXA) in the lumbar spine (L2-4) and femoral neck. Results: Thirteen (62 %) non-treated and 23 (82 %) treated patients fulfilled the BMD criteria for osteopenia or osteoporosis. Z scores for age-matched control in lumbar spine and femoral neck were -0.9 ± 0.7 and -0.6 ± 0.5, respectively, in the treated group, and -1.8 ± 1.1 and-1.6 ± 1.0 , respectively, in the non-treated group, the differences between the two groups were highly significant (P<0.01). Conclusion: Prostate cancer patients who received ADT for more than 1 year had a significantly lower BMD in the lumbar spine and femoral neck than those before the beginning of ADT.展开更多
AIM: To investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS: Rats for sleep disruption were placed...AIM: To investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS: Rats for sleep disruption were placed inside a computerized rotating drum, gastric mucosa was taken from rats with 1, 3 and 7d sleep deprivation. RT-PCR, immunohistochemistry and Western blotting were used to determine the expression of heat shock protein 70. Ethanol (500mL.L(-1), i.g.) was used to induce gastric mucosa damage. RESULTS: RT-PCR, Western blotting and immunostaining confirmed that the sleep deprivation as a stress resulted in significantly greater expression of inducible heat shock protein 70 in gastric mucosa of rats. After the 500mL.L(-1) ethanol challenge, the ulcer area found in the rats with 7d sleep deprivation (19.15 +/- 4.2)mm(2) was significantly lower (P【0.01) than the corresponding control (53.7 +/- 8.1) mm(2). CONCLUSION: Sleep deprivation as a stress, in addition to lowering the gastric mucosal barrier, is able to stimulate the expression of inducible heat shock protein 70 in gastric mucosa of rats, the heat shock protein 70 may play an important role in gastric mucosal protection.展开更多
This study was performed to assess serum testosterone alterations induced by paradoxical sleep deprivation (PSD) and to verify their attenuation during sleep recovery (SR) based on different durations and ages. Wi...This study was performed to assess serum testosterone alterations induced by paradoxical sleep deprivation (PSD) and to verify their attenuation during sleep recovery (SR) based on different durations and ages. Wistar male rats aged 12 weeks for the younger group and 20 weeks for the elder group were randomly distributed into one of the following groups: a control group (cage and platform), 3-day SD, 5-day SD, 7-day SD, 1-day SR, 3-day SR and 5-day SR groups. For PSD, the modified multiple platform method was used to specifically limit rapid eye movement (REM) sleep. Differences in the testosterone and luteinizing hormone levels between the younger group and the elder group according to duration of PSD and SR recovery were analysed. Testosterone continued to fall during the sleep deprivation period in a time-dependent manner in both the younger (P=-0.001, correlation coefficient r=-0.651) and elder groups (P=0.001, correlation coefficient r=-0.840). The elder group showed a significantly lower level of testosterone compared with the younger group after PSD. Upon SR after 3 days of PSD, the testosterone level continued to rise for 5 days after sleep recovery in the younger group (P=0.013), whereas testosterone concentrations failed to recover until day 5 in the elder group. PSD caused a more detrimental effect on serum testosterone in the elder group compared to the younger group with respect to decreases in luteinizing hormone (LH) levels. The replenishment of serum testosterone level was prohibited in the elder group suggesting that the effects of SD/SR may be age-dependent. The mechanism by which SD affects serum testosterone and how age may modify the process are still unclear.展开更多
INTRODUCTIONStress has been shown to induce gastric mucosallesions and lower the effectiveness of the mucosa asa barrier.In rats,gastric ulcers can beproduced by cold-restraint stress and it isfrequently employed as a...INTRODUCTIONStress has been shown to induce gastric mucosallesions and lower the effectiveness of the mucosa asa barrier.In rats,gastric ulcers can beproduced by cold-restraint stress and it isfrequently employed as a model for the study of themechanisms of stress on ulcer formation.Cold-restraint stress however is not normally展开更多
Prostate cancer (PCa) is the most common visceral malignancy in men with androgen deprivation therapy (ADT) the preferred therapy to suppress testosterone production and hence tumor growth. Despite its effectivene...Prostate cancer (PCa) is the most common visceral malignancy in men with androgen deprivation therapy (ADT) the preferred therapy to suppress testosterone production and hence tumor growth. Despite its effectiveness in lowering testosterone, ADT is associated with side effects including loss of muscle mass, diminished muscle strength, decrements in physical performance, earlier fatigue and declining quality of life. This review reports a survey of the literature with a focus on changes in muscle strength, physical function and body composition, due to short-term and long-term ADT. Studies in these areas are sparse, especially well-controlled, prospective randomized trials. Cross-sectional and longitudinal data (up to 2 years) for men with PCa treated with ADT as well as patients with PCa not receiving ADT and age-matched healthy men are presented when available. Based on limited longitudinal data, the adverse effects of ADT on muscle function, physical performance and body composition occur shortly after the onset of ADT and tend to persist and worsen over time. Exercise training is a safe and effective intervention for mitigating these changes and initial guidelines for exercise program design for men with PCa have been published by the American College of Sports Medicine. Disparities in study duration, types of studies and other patient-specific variables such as time since diagnosis, cancer stage and comorbidities may all affect an understanding of the influence of ADT on health, physical performance and mortality.展开更多
Prostate cancer is one of the most common malignancies in men. Previous research has determined that androgen deprivation therapy (ADT) may be accompanied by an unfavourable metabolic profile. In this prospective st...Prostate cancer is one of the most common malignancies in men. Previous research has determined that androgen deprivation therapy (ADT) may be accompanied by an unfavourable metabolic profile. In this prospective study, 133 men were recruited, including 46 prostate cancer patients who had undergone bilateral orchiectomy and been on flutamide (the ADT group), 37 men with prostate cancer who had undergone radical prostatectomy (the non-ADT group) and 50 normal control subjects (the control group). All subjects were followed for at least 12 months. From baseline to 3 months, men in the ADT group had increased levels of fasting serum insulin and low-density lipoprotein compared to the other two groups (P〈0.05). No obvious changes were found in the other parameters (P〉0.05). After 12 months, men in the ADT group had increased levels of waist circumference, fasting serum insulin and glucose, total cholesterol, high-density lipoprotein and low-density lipoprotein compared to the other two groups (P〈0.05). Additionally, the morbidity rate of metabolic syndrome in the ADT group was higher (P〈0.05) compared to the other two groups. ADT through surgical castration for men with prostate cancer may be associated with unfavourable metabolic changes. The benefits of the therapy should be balanced prudently against these risks.展开更多
AIM: To investigate the role of activating transcription factor 4(ATF4) in glucose deprivation(GD) induced colorectal cancer(CRC) drug resistance and the mechanism involved.METHODS: Chemosensitivity and apoptosis were...AIM: To investigate the role of activating transcription factor 4(ATF4) in glucose deprivation(GD) induced colorectal cancer(CRC) drug resistance and the mechanism involved.METHODS: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance. Quantitative real-time RTPCR and Western blot were used to detect the mR NA and protein expression of drug resistance gene 1(MDR1), respectively.RESULTS: GD protected CRC cells from drug-induced apoptosis(oxaliplatin and 5-fluorouracil) and induced the expression of ATF4, a key gene of the unfolded protein response. Depletion of ATF4 in CRC cells under the GD condition can induce apoptosis and drug resensitization. Similarly, inhibition of ATF4 in the ATF4-overexpressing CRC cells reintroduced therapeutic sensitivity and apoptosis. In addition, increased MDR1 expression was observed in GD-treated CRC cells. CONCLUSION: These data indicate that GD promotes chemoresistance in CRC cells through up-regulating ATF4 expression.展开更多
Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotect...Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotective mechanism of Shuxuetong injection remains poorly understood. Here, cerebral microvascular endothelial cells(bEnd.3) were incubated in glucose-free Dulbecco's modified Eagle's medium containing 95% N_2/5% CO_2 for 6 hours, followed by high-glucose medium containing 95% O_2 and 5% CO_2 for 18 hours to establish an oxygen-glucose deprivation/reperfusion model. This in vitro cell model was administered Shuxuetong injection at 1/32, 1/64, and 1/128 concentrations(diluted 32-, 64-, and 128-times). Cell Counting Kit-8 assay was used to evaluate cell viability. A fluorescence method was used to measure lactate dehydrogenase, and a fluorescence microplate reader used to detect intracellular reactive oxygen species. A fluorescent probe was also used to measure mitochondrial superoxide production. A cell resistance meter was used to measure transepithelial resistance and examine integrity of monolayer cells. The fluorescein isothiocyanate-dextran test was performed to examine blood-brain barrier permeability. Real-time reverse transcription polymerase chain reaction was performed to analyze mRNA expression levels of tumor necrosis factor alpha, interleukin-1β, interleukin-6, and inducible nitric oxide synthase. Western blot assay was performed to analyze expression of caspase-3, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, occludin, vascular endothelial growth factor, cleaved caspase-3, B-cell lymphoma 2, phosphorylated extracellular signal-regulated protein kinase, extracellular signal-regulated protein kinase, nuclear factor-κB p65, I kappa B alpha, phosphorylated I kappa B alpha, I kappa B kinase, phosphorylated I kappa B kinase, claudin-5, and zonula occludens-1. Our results show that Shuxuetong injection increases bEnd.3 cell viability and B-cell lymphoma 2 expression, reduces cleaved caspase-3 expression, inhibits production of reactive oxygen species and mitochondrial superoxide, suppresses expression of tumor necrosis factor alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase mRNA, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, markedly increases transepithelial resistance, decreases blood-brain barrier permeability, upregulates claudin-5, occludin, and zonula occludens-1 expression, reduces nuclear factor-κB p65 and vascular endothelial growth factor expression, and reduces I kappa B alpha, extracellular signal-regulated protein kinase 1/2, and I kappa B kinase phosphorylation levels. Overall, these findings suggest that Shuxuetong injection has protective effects on brain microvascular endothelial cells after oxygen-glucose deprivation/reperfusion. Moreover, its protective effect is associated with reduction of mitochondrial superoxide production, inhibition of the inflammatory response, and inhibition of vascular endothelial growth factor, extracellular signal-regulated protein kinase 1/2, and the nuclear factor-κB p65 signaling pathway.展开更多
Androgen deprivation therapy (ADT) is widely used as standard therapy in the treatment of locally advanced and metastatic prostate cancer. While efficacious, ADT is associated with multiple side effects, including d...Androgen deprivation therapy (ADT) is widely used as standard therapy in the treatment of locally advanced and metastatic prostate cancer. While efficacious, ADT is associated with multiple side effects, including decreased libido, erectile dysfunction, diabetes, loss of muscle tone and altered body composition, osteoporosis, lipid changes, memory loss, gynecomastia and hot flashes. The breadth of literature for the treatment of hot flashes is much smaller in men than that in women. While hormonal therapy of hot flashes has been shown to be effective, multiple non-hormonal medications and treatment methods have also been developed. This article reviews current options for the treatment of hot flashes in patients taking ADT.展开更多
BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have bee...BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have been thoroughly studied with regard to initiating neuronal apoptosis. OBJECTIVE: To establish an in vitro model of oxygen-glucose deprivation and reintroduction in the rat hippocampus to simulate cerebral ischemia-reperfusion injury; to observe c-Jun N-terminal kinase 3 (JNK3) mRNA expression in hippocampal neurons following Astragalus injection; and thus to determine changes in the signaling and downstream pathways of neuronal apoptosis at the cellular and molecular level. DESIGN, TIME AND SETTING: A randomized, controlled, cellular and molecular experiment was performed at the Department of Central Laboratory, Chengde Medical College from February to June 2008. MATERIALS: Astragalus injection, the main ingredient of astragaloside, was purchased from Chengdu Di'ao Jiuhong Pharmaceutical Manufactory, China. JNK3 mRNA probe and in situ hybridization kit were purchased from Tianjin Haoyang Biological Technology, China, and JNK3 RT-PCR primers were designed by Shanghai Bio-engineering, China. METHODS: Primary cultures of hippocampal neurons derived from Sprague Dawley rats, aged 1 2 days, were established. After 8 days, the hippocampal neurons were assigned to the following interventions: model group, Astragalus group, and vehicle control group, cells were subjected to oxygen-glucose reintroduction after oxygen-glucose deprivation for 30 minutes in sugar-free Earle's solution and a hypoxia device, which contained high-purity nitrogen. The normal control group was subjected to primary culture techniques and was not treated using above-mentioned interventions. In addition, the Astragalus and vehicle control groups were treated with Astragalus injection (0.5 g/L raw drug) or sterile, deionized water at 2 hours prior to oxygen-glucose deprivation, respectively. MAIN OUTCOME MEASURES: JNK3 mRNA expression was measured by in situ hybridization and RT-PCR at 0, 0.5, 2, 6, 24, 72, and 120 hours after oxygen-glucose reintroduction. RESULTS: Hippocampal neuronal morphology was normal in the normal control group. Hippocampal neurons exhibited apparent apoptosis-like pathological changes in the model, as well as the vehicle control, groups. The apoptosis-like pathological changes in the hippocampal neurons were less in the Astragalus group. Results from in situ hybridization and RT-PCR showed that JNK3 mRNA expression significantly increased in hippocampal neurons from model group, as well as the vehicle control group, compared with the normal control group (P 〈 0.05). In addition, JNK3 mRNA expression significantly decreased in hippocampal neurons of the Astragalus group, compared with the model group and vehicle control group (P 〈 0.05). CONCLUSION: Astragalus injection inhibited apoptosis-related JNK3 mRNA expression following oxygen-glucose deprivation and reintroduction, and accordingly played a role in inhibiting hippocampal neuronal apoptosis.展开更多
Many patients with prostate cancer for whom androgen deprivation therapy (ADT) is indicated are young and desire to remain sexually active. In such patients, the side effects of androgen therapy on sexual function c...Many patients with prostate cancer for whom androgen deprivation therapy (ADT) is indicated are young and desire to remain sexually active. In such patients, the side effects of androgen therapy on sexual function can be a source of serious reduction in overall quality of life. Providing the appropriate treatment options in this patient population is therefore essential. Nevertheless, treating such patients is challenging and an understanding of the underlying mechanisms of sexual physiology and pathophysiology is crucial to optimal patient care. In this paper, we reviewed what was known regarding the effects of ADT on sexual function in animal models and we also provided a detailed review on the effects of ADT on sexual health in humans and its treatment.展开更多
BACKGROUND: Complex learning tasks result in a greater number of paradoxical sleep phases, which can improve memory. The effect of paradoxical sleep deprivation, induced by "flower pot" technique, on spatial refere...BACKGROUND: Complex learning tasks result in a greater number of paradoxical sleep phases, which can improve memory. The effect of paradoxical sleep deprivation, induced by "flower pot" technique, on spatial reference memory and working memory require further research. OBJECTIVE: To observe the effect of progressive paradoxical sleep deprivation in rats, subsequent to learning, on memory using the Morris Water Maze. DESIGN, TIME AND SETTING: Controlled observation experiment. The experiment was performed at the Laboratory of Neurobiology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University from December 2006 to October 2007. MATERIALS: Twenty-eight, male, Wistar rats, 3-4 months old, were provided by the Experimental Animal Center of Lanzhou University. The Morris Water Maze and behavioral analyses system was purchased from Genheart Company, Beijing, China. METHODS: All animals, according to a random digits table, were randomly divided into paradoxical sleep deprivation, tank control, and home cage control groups. Paradoxical sleep deprivation was induced by the "flower pot" technique for 72 hours, housing the rats on small platforms over water. Rats in the "tank control" and "home cage control" groups were housed either in a tank with large platforms over the water or in normal cages without paradoxical sleep deprivation. MAIN OUTCOME MEASURES: Morris Water Maze was employed for task learning and spatial memory testing. Rats in all groups were placed at six random starting points each day for four consecutive days. Each placement was repeated for two trials; the first trial represented reference memory and the second working memory. Rats in the first trial were allowed to locate the submerged platform within 120 seconds. Data, including swimming distance, escape latency, swimming velocity, percentage of time in correct quarter, and memory scores were recorded and analyzed automatically by behavioral analyses systems for Morris Water Maze. RESULTS: Twenty-eight rats were included in the final analysis, without any loss. In the first trial, between day 2 and 4, escape latency and swimming distance increased significantly in the paradoxical sleep deprivation group compared to the home cage control and tank control groups (P 〈 0.01); percentage of time in correct quarter and memory scores, however, decreased in the paradoxical sleep deprivation group compared to the home cage control and tank control groups (P 〈 0.01). The escape latency, swimming distance, percentage of time in correct quarter, and memory scores in the second trial was not significantly different among the three groups (P 〉 0.05). CONCLUSION: Paradoxical sleep deprivation inhibits spatial reference memory, but not working memory.展开更多
基金National Natural Science Foundation of China(81870850)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0322)。
文摘Emerging evidence indicates that sleep deprivation(SD)can lead to Alzheimer’s disease(AD)-related pathological changes and cognitive decline.However,the underlying mechanisms remain obscure.In the present study,we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD.Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis,elevated NLRP3 inflammasome expression,GSK-3βactivation,autophagy dysfunction,and tau hyperphosphorylation in the hippocampus.Colonization with the“SD microbiota”replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice.Remarkably,both the deletion of NLRP3 in NLRP3-/-mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux,suppressed tau hyperphosphorylation,and ameliorated cognitive deficits induced by chronic SD,while GSK-3βactivity was not regulated by the NLRP3 inflammasome in chronic SD.Notably,deletion of NLRP3 reversed NLRP3 inflammasome activation,autophagy deficits,and tau hyperphosphorylation induced by GSK-3βactivation in primary hippocampal neurons,suggesting that GSK-3β,as a regulator of NLRP3-mediated autophagy dysfunction,plays a significant role in promoting tau hyperphosphorylation.Thus,gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction,ultimately leading to cognitive deficits.Overall,these findings highlight GSK-3βas a regulator of NLRP3-mediated autophagy dysfunction,playing a critical role in promoting tau hyperphosphorylation.
基金supported by a grant from SFCE INCa (Institut National du Cancer)GOCE (Grand Ouest Cancer de l’Enfant).
文摘The posttreatment period is a key part of the management of pediatric cancer.During this time,school and psychological difficulties have been described in childhood cancer survivors(CCS)and can be prognostic for the success of social reintegration.This study estimated the influence of the household’s socioeconomic status(SES)on these psychosocial difficulties.This study is based on a prospective multicentric database and focused on children who received a psychosocial evaluation during their follow-up from 2013 to 2020.We retrieved data on school and psychological difficulties.Household SES was estimated by a social deprivation score.Data from1003 patients were analyzed.School difficulties were noted in 22%of CCS.A greater social deprivation was significantly associated with school difficulty.Tumor relapse,treatment with hematopoietic stem cell transplantation,and central nervous system(CNS)tumors remained significant risk factors.In the subgroup of CNS tumors,school difficulties were increased and associated with greater social deprivation.Psychological difficulties were not associated with the deprivation score.There is a link between SES and school difficulties in CCS.Further investigations should be carried out for children with CNS tumors,which is the population of the greatest concern.
文摘BACKGROUND Sleep deprivation is a prevalent issue that impacts cognitive function.Although numerous neuroimaging studies have explored the neural correlates of sleep loss,inconsistencies persist in the reported results,necessitating an investigation into the consistent brain functional changes resulting from sleep loss.AIM To establish the consistency of brain functional alterations associated with sleep deprivation through systematic searches of neuroimaging databases.Two metaanalytic methods,signed differential mapping(SDM)and activation likelihood estimation(ALE),were employed to analyze functional magnetic resonance imaging(fMRI)data.METHODS A systematic search performed according to PRISMA guidelines was conducted across multiple databases through July 29,2023.Studies that met specific inclusion criteria,focused on healthy subjects with acute sleep deprivation and reported whole-brain functional data in English were considered.A total of 21 studies were selected for SDM and ALE meta-analyses.RESULTS Twenty-one studies,including 23 experiments and 498 subjects,were included.Compared to pre-sleep deprivation,post-sleep deprivation brain function was associated with increased gray matter in the right corpus callosum and decreased activity in the left medial frontal gyrus and left inferior parietal lobule.SDM revealed increased brain functional activity in the left striatum and right central posterior gyrus and decreased activity in the right cerebellar gyrus,left middle frontal gyrus,corpus callosum,and right cuneus.CONCLUSION This meta-analysis consistently identified brain regions affected by sleep deprivation,notably the left medial frontal gyrus and corpus callosum,shedding light on the neuropathology of sleep deprivation and offering insights into its neurological impact.
文摘Objective To observe the effect of application of garlic paste at Shenque (神阙 CV8) on the circadian rhythm in sleep deprivation young students. Metheds Twenty healthy volunteer young male students from Southern Medical University were randomly divided into three groups: normal group (A), sleep deprivation group (B) and treatment group (C). Volunteers in group B and C received 48 h sleep deprivation (SD), and in the mean time volunteers in group C were treated by garlic paste at Shenque (神阙 CV8), while those in group A had no any treatment. The body temperature of all the volunteers was detected at 6:00 am, 12:00 am, 6:00 pm and 0:00 am, respectively, after the treatment. Results The mean body temperature values in group A and C both were highest at 6: 00 pm and lowest at 6: 00 am which had a significant difference in each group (P〈0.01); in group B, the mean body temperature was highest at 0:00 am and lowestat 6:00 am, no significant difference was found between them (P〉0.05). Results of cosine analysis showed that in subjects of group B the circadian rhythm of body temperature still kept going well after SD, but the peak amplitude and amplitude of vibration were higher than those of group A, and the acrophase of group B was obviously lower than that of group C and A. The 3 indexes of group C were similar to those of group A, denoting that garlic paste application of Shenque (神阙 CV8) could prevent disorders of circadian rhythm of the body temperature. Conclusion The garlic paste application at Shenque (神阙 CV8) can adjust circadian rhythm and accelerate the recovery processes of circadian rhythm in SD young students.
文摘Oxygen/glucose deprivation (OGD) has been widely used as an in vitro model of focal ischemia, where the blood flow is severely reduced and neurons rapidly die. However, adjacent to the focal region is ‘penumbra', where residual blood flow remains oxygen and glucose supplies are at low levels. To model this pathological genesis, we developed a partial OGD (pOGD) protocol in a rat brain slice. This model met two requirements: oxygen was partially deprived and glucose was reduced in the perfusion buffer. Therefore we investigated the effect of pOGD on gama-aminobutyric acid (GABAA) receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 neurons of a hippocampal slice through whole-cell patch-clamp technique. We found that the amplitude and decay time of IPSCs were increased immediately during pOGD treatment. And the enhancement of IPSCs amplitude resulted from an increase of the synaptic conductance without a significant change in the reversal potential of chloride. These results suggested that the nervous system could increase inhibitory neurotransmission to offset excitation by homeostasis mechanisms during the partial oxygen and glucose attack.
文摘Objective:To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat,and visual development plastic stage and visual plasticity in adult rats.Methods:A total of 60 SD rats ages 13 d were randomly divided into A,B,C three groups with 20 in each group,group A was set as the normal control group without any processing,group B was strabismus amblyopic group,using the unilateral extraocular rectus resection to establish the strabismus amblyopia model,group C was monocular form deprivation amblyopia group using unilateral eyelid edge resection+lid suture.At visual developmental early phase(P2S),meta phase(P3S),late phase(P45)and adult phase(P120),the lateral geniculate body and visual cortex area 17 of five rats in each group were exacted for C-fos Immunocytochemistry.Neuron morphological changes in lateral geniculate body and visual cortex was observed,the positive neurons differences of C-fos expression induced by light stimulation was measured in each group,and the condition of radiation development of P120 amblyopic adult rats was observed.Results:In groups B and C,C-fos positive cells were significantly lower than the control group at P25(P<0.05),there was no statistical difference of C-fos protein positive cells between group B and group A(P>0.05),C-fos protein positive cells level of group B was significantly lower than that of group A(P<0.05).The binoculus C-fos protein positive cells level of groups B and C were significantly higher than that of control group at P35,P4S and P120 with statistically significant differences(P<0.05).Conclusions:The increasing of C-fos expression in geniculate body and visual cortex neurons of adult amblyopia suggests the visual cortex neurons exist a certain degree of visual plasticity.
文摘Androgen deprivation therapy (ADT) has been associated with a plethora of adverse effects, consistent with the androgen dependency of multiple reproductive and somatic tissues. One such tissue is the hemopoietic system, and one of the most predictable consequences of ADT is the development of anemia. Although anemia caused by ADT is rarely severe, ADT is often given to frail, elderly men with increased susceptibility to anemia due to multiple other causes. ADT-associated anemia may contribute to fatigue and reduced quality of life (QoL) in such men, although this requires further study. While anemia is an independent risk factor of mortality in men with prostate cancer, it is not known whether treatment of ADT-associated anemia alters clinically important outcomes, or whether treatment affects mortality. Awareness of the phenomenon of ADT-induced anemia should avoid unnecessary work-up in mild cases of normocytic normochromic anemia. However, assessment and treatment of more severe anemia may be required. This should be determined on an individual basis. In contrast to the weli-descrihed actions of ADT on erythropoiesis, its effect on other hemopoietic lineages has been less well elucidated. While preclinical studies have found roles for androgens in maturation and differentiated function of neutrophils, lymphocytes and platelets, the implications of these findings for men with prostate cancer receiving ADT require further studies.
文摘Androgens play a prominent role in the development, maintenance and progression of prostate cancer. The introduction of androgen deprivation therapies into the treatment paradigm for prostate cancer patients has resulted in a wide variety of benefits ranging from a survival advantage for those with clinically localized or locally advanced disease, to improvements in symptom control for patients with advanced disease. Controversies remain, however, surrounding the optimal timing, duration and schedule of these hormonal approaches. Newer hormonal manipulations such as abiraterone acetate have also been investigated and will broaden treatment options for men with prostate cancer, This review highlights the various androgen-directed treatment options available to men with prostate cancer, their specific indications and the evidence supporting each approach, as well as patterns of use of hormonal therapies.
文摘Aim: To evaluate the effect of androgen deprivation therapy (ADT) on bone mineral density (BMD) in prostate cancer patients. Methods: Forty-nine prostate cancer patients with their BMD determined were divided into two groups: the non-treated group included 21 patients before the commencement of ADT and the treated group, 28 patients, who had received ADT for more than 1 year. BMD was measured by dual energy X-ray absorptiometry (DEXA) in the lumbar spine (L2-4) and femoral neck. Results: Thirteen (62 %) non-treated and 23 (82 %) treated patients fulfilled the BMD criteria for osteopenia or osteoporosis. Z scores for age-matched control in lumbar spine and femoral neck were -0.9 ± 0.7 and -0.6 ± 0.5, respectively, in the treated group, and -1.8 ± 1.1 and-1.6 ± 1.0 , respectively, in the non-treated group, the differences between the two groups were highly significant (P<0.01). Conclusion: Prostate cancer patients who received ADT for more than 1 year had a significantly lower BMD in the lumbar spine and femoral neck than those before the beginning of ADT.
文摘AIM: To investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS: Rats for sleep disruption were placed inside a computerized rotating drum, gastric mucosa was taken from rats with 1, 3 and 7d sleep deprivation. RT-PCR, immunohistochemistry and Western blotting were used to determine the expression of heat shock protein 70. Ethanol (500mL.L(-1), i.g.) was used to induce gastric mucosa damage. RESULTS: RT-PCR, Western blotting and immunostaining confirmed that the sleep deprivation as a stress resulted in significantly greater expression of inducible heat shock protein 70 in gastric mucosa of rats. After the 500mL.L(-1) ethanol challenge, the ulcer area found in the rats with 7d sleep deprivation (19.15 +/- 4.2)mm(2) was significantly lower (P【0.01) than the corresponding control (53.7 +/- 8.1) mm(2). CONCLUSION: Sleep deprivation as a stress, in addition to lowering the gastric mucosal barrier, is able to stimulate the expression of inducible heat shock protein 70 in gastric mucosa of rats, the heat shock protein 70 may play an important role in gastric mucosal protection.
文摘This study was performed to assess serum testosterone alterations induced by paradoxical sleep deprivation (PSD) and to verify their attenuation during sleep recovery (SR) based on different durations and ages. Wistar male rats aged 12 weeks for the younger group and 20 weeks for the elder group were randomly distributed into one of the following groups: a control group (cage and platform), 3-day SD, 5-day SD, 7-day SD, 1-day SR, 3-day SR and 5-day SR groups. For PSD, the modified multiple platform method was used to specifically limit rapid eye movement (REM) sleep. Differences in the testosterone and luteinizing hormone levels between the younger group and the elder group according to duration of PSD and SR recovery were analysed. Testosterone continued to fall during the sleep deprivation period in a time-dependent manner in both the younger (P=-0.001, correlation coefficient r=-0.651) and elder groups (P=0.001, correlation coefficient r=-0.840). The elder group showed a significantly lower level of testosterone compared with the younger group after PSD. Upon SR after 3 days of PSD, the testosterone level continued to rise for 5 days after sleep recovery in the younger group (P=0.013), whereas testosterone concentrations failed to recover until day 5 in the elder group. PSD caused a more detrimental effect on serum testosterone in the elder group compared to the younger group with respect to decreases in luteinizing hormone (LH) levels. The replenishment of serum testosterone level was prohibited in the elder group suggesting that the effects of SD/SR may be age-dependent. The mechanism by which SD affects serum testosterone and how age may modify the process are still unclear.
基金the CRCG grant from the University of Hong Kong.
文摘INTRODUCTIONStress has been shown to induce gastric mucosallesions and lower the effectiveness of the mucosa asa barrier.In rats,gastric ulcers can beproduced by cold-restraint stress and it isfrequently employed as a model for the study of themechanisms of stress on ulcer formation.Cold-restraint stress however is not normally
文摘Prostate cancer (PCa) is the most common visceral malignancy in men with androgen deprivation therapy (ADT) the preferred therapy to suppress testosterone production and hence tumor growth. Despite its effectiveness in lowering testosterone, ADT is associated with side effects including loss of muscle mass, diminished muscle strength, decrements in physical performance, earlier fatigue and declining quality of life. This review reports a survey of the literature with a focus on changes in muscle strength, physical function and body composition, due to short-term and long-term ADT. Studies in these areas are sparse, especially well-controlled, prospective randomized trials. Cross-sectional and longitudinal data (up to 2 years) for men with PCa treated with ADT as well as patients with PCa not receiving ADT and age-matched healthy men are presented when available. Based on limited longitudinal data, the adverse effects of ADT on muscle function, physical performance and body composition occur shortly after the onset of ADT and tend to persist and worsen over time. Exercise training is a safe and effective intervention for mitigating these changes and initial guidelines for exercise program design for men with PCa have been published by the American College of Sports Medicine. Disparities in study duration, types of studies and other patient-specific variables such as time since diagnosis, cancer stage and comorbidities may all affect an understanding of the influence of ADT on health, physical performance and mortality.
文摘Prostate cancer is one of the most common malignancies in men. Previous research has determined that androgen deprivation therapy (ADT) may be accompanied by an unfavourable metabolic profile. In this prospective study, 133 men were recruited, including 46 prostate cancer patients who had undergone bilateral orchiectomy and been on flutamide (the ADT group), 37 men with prostate cancer who had undergone radical prostatectomy (the non-ADT group) and 50 normal control subjects (the control group). All subjects were followed for at least 12 months. From baseline to 3 months, men in the ADT group had increased levels of fasting serum insulin and low-density lipoprotein compared to the other two groups (P〈0.05). No obvious changes were found in the other parameters (P〉0.05). After 12 months, men in the ADT group had increased levels of waist circumference, fasting serum insulin and glucose, total cholesterol, high-density lipoprotein and low-density lipoprotein compared to the other two groups (P〈0.05). Additionally, the morbidity rate of metabolic syndrome in the ADT group was higher (P〈0.05) compared to the other two groups. ADT through surgical castration for men with prostate cancer may be associated with unfavourable metabolic changes. The benefits of the therapy should be balanced prudently against these risks.
基金Supported by National Natural Science Foundation of China,No.81000867,No.81272299,No.81301784 and No.81301920Natural Science Foundation of Jiangsu Province,No.BK20150004 and No.BK20151108+3 种基金the Fundamental Research Funds for the Central Universities,No.NOJUSRP51619BMedical Key Professionals Program of Jiangsu Province,No.RC2011031"333" Talents Project of Jiangsu ProvinceHospital Management Center of Wuxi,No.YGZXM1524
文摘AIM: To investigate the role of activating transcription factor 4(ATF4) in glucose deprivation(GD) induced colorectal cancer(CRC) drug resistance and the mechanism involved.METHODS: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance. Quantitative real-time RTPCR and Western blot were used to detect the mR NA and protein expression of drug resistance gene 1(MDR1), respectively.RESULTS: GD protected CRC cells from drug-induced apoptosis(oxaliplatin and 5-fluorouracil) and induced the expression of ATF4, a key gene of the unfolded protein response. Depletion of ATF4 in CRC cells under the GD condition can induce apoptosis and drug resensitization. Similarly, inhibition of ATF4 in the ATF4-overexpressing CRC cells reintroduced therapeutic sensitivity and apoptosis. In addition, increased MDR1 expression was observed in GD-treated CRC cells. CONCLUSION: These data indicate that GD promotes chemoresistance in CRC cells through up-regulating ATF4 expression.
基金supported in part by the National Natural Science Foundation of China,No.81573644(to LMH),81573733(to SWX)the Tianjin 131 Innovative Team Project,China(to HW)+5 种基金the National Major Science and Technology Project of China,No.2012ZX09101201-004(to SWX)the Science and Technology Plan Project of Tianjin of China,No.16PTSYJC00120(to LMH)the Applied Foundation and Frontier Technology Research Program of Tianjin of China(General Project),No.14JCYBJC28900(to SXW)the National International Science and Technology Cooperation Project of China,No.2015DFA30430(to HW)the Key Program of the Natural Science Foundation of Tianjin of China,No.16ICZDJC36300(to HW)the Scientific Research and Technology Development Plan Project of Guangxi Zhuang Autonomous Region of China,No.14125008-2-5(to SXW)
文摘Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotective mechanism of Shuxuetong injection remains poorly understood. Here, cerebral microvascular endothelial cells(bEnd.3) were incubated in glucose-free Dulbecco's modified Eagle's medium containing 95% N_2/5% CO_2 for 6 hours, followed by high-glucose medium containing 95% O_2 and 5% CO_2 for 18 hours to establish an oxygen-glucose deprivation/reperfusion model. This in vitro cell model was administered Shuxuetong injection at 1/32, 1/64, and 1/128 concentrations(diluted 32-, 64-, and 128-times). Cell Counting Kit-8 assay was used to evaluate cell viability. A fluorescence method was used to measure lactate dehydrogenase, and a fluorescence microplate reader used to detect intracellular reactive oxygen species. A fluorescent probe was also used to measure mitochondrial superoxide production. A cell resistance meter was used to measure transepithelial resistance and examine integrity of monolayer cells. The fluorescein isothiocyanate-dextran test was performed to examine blood-brain barrier permeability. Real-time reverse transcription polymerase chain reaction was performed to analyze mRNA expression levels of tumor necrosis factor alpha, interleukin-1β, interleukin-6, and inducible nitric oxide synthase. Western blot assay was performed to analyze expression of caspase-3, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, occludin, vascular endothelial growth factor, cleaved caspase-3, B-cell lymphoma 2, phosphorylated extracellular signal-regulated protein kinase, extracellular signal-regulated protein kinase, nuclear factor-κB p65, I kappa B alpha, phosphorylated I kappa B alpha, I kappa B kinase, phosphorylated I kappa B kinase, claudin-5, and zonula occludens-1. Our results show that Shuxuetong injection increases bEnd.3 cell viability and B-cell lymphoma 2 expression, reduces cleaved caspase-3 expression, inhibits production of reactive oxygen species and mitochondrial superoxide, suppresses expression of tumor necrosis factor alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase mRNA, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, markedly increases transepithelial resistance, decreases blood-brain barrier permeability, upregulates claudin-5, occludin, and zonula occludens-1 expression, reduces nuclear factor-κB p65 and vascular endothelial growth factor expression, and reduces I kappa B alpha, extracellular signal-regulated protein kinase 1/2, and I kappa B kinase phosphorylation levels. Overall, these findings suggest that Shuxuetong injection has protective effects on brain microvascular endothelial cells after oxygen-glucose deprivation/reperfusion. Moreover, its protective effect is associated with reduction of mitochondrial superoxide production, inhibition of the inflammatory response, and inhibition of vascular endothelial growth factor, extracellular signal-regulated protein kinase 1/2, and the nuclear factor-κB p65 signaling pathway.
文摘Androgen deprivation therapy (ADT) is widely used as standard therapy in the treatment of locally advanced and metastatic prostate cancer. While efficacious, ADT is associated with multiple side effects, including decreased libido, erectile dysfunction, diabetes, loss of muscle tone and altered body composition, osteoporosis, lipid changes, memory loss, gynecomastia and hot flashes. The breadth of literature for the treatment of hot flashes is much smaller in men than that in women. While hormonal therapy of hot flashes has been shown to be effective, multiple non-hormonal medications and treatment methods have also been developed. This article reviews current options for the treatment of hot flashes in patients taking ADT.
基金the Natural Science Foundation of Hebei Province,No.C2006000865
文摘BACKGROUND: In studies concerning cell injury induced by cerebral ischemia-reperfusion, current experiments have primarily focused on altered protein levels. In addition, the apoptotic proteins Bax and Bcl-2 have been thoroughly studied with regard to initiating neuronal apoptosis. OBJECTIVE: To establish an in vitro model of oxygen-glucose deprivation and reintroduction in the rat hippocampus to simulate cerebral ischemia-reperfusion injury; to observe c-Jun N-terminal kinase 3 (JNK3) mRNA expression in hippocampal neurons following Astragalus injection; and thus to determine changes in the signaling and downstream pathways of neuronal apoptosis at the cellular and molecular level. DESIGN, TIME AND SETTING: A randomized, controlled, cellular and molecular experiment was performed at the Department of Central Laboratory, Chengde Medical College from February to June 2008. MATERIALS: Astragalus injection, the main ingredient of astragaloside, was purchased from Chengdu Di'ao Jiuhong Pharmaceutical Manufactory, China. JNK3 mRNA probe and in situ hybridization kit were purchased from Tianjin Haoyang Biological Technology, China, and JNK3 RT-PCR primers were designed by Shanghai Bio-engineering, China. METHODS: Primary cultures of hippocampal neurons derived from Sprague Dawley rats, aged 1 2 days, were established. After 8 days, the hippocampal neurons were assigned to the following interventions: model group, Astragalus group, and vehicle control group, cells were subjected to oxygen-glucose reintroduction after oxygen-glucose deprivation for 30 minutes in sugar-free Earle's solution and a hypoxia device, which contained high-purity nitrogen. The normal control group was subjected to primary culture techniques and was not treated using above-mentioned interventions. In addition, the Astragalus and vehicle control groups were treated with Astragalus injection (0.5 g/L raw drug) or sterile, deionized water at 2 hours prior to oxygen-glucose deprivation, respectively. MAIN OUTCOME MEASURES: JNK3 mRNA expression was measured by in situ hybridization and RT-PCR at 0, 0.5, 2, 6, 24, 72, and 120 hours after oxygen-glucose reintroduction. RESULTS: Hippocampal neuronal morphology was normal in the normal control group. Hippocampal neurons exhibited apparent apoptosis-like pathological changes in the model, as well as the vehicle control, groups. The apoptosis-like pathological changes in the hippocampal neurons were less in the Astragalus group. Results from in situ hybridization and RT-PCR showed that JNK3 mRNA expression significantly increased in hippocampal neurons from model group, as well as the vehicle control group, compared with the normal control group (P 〈 0.05). In addition, JNK3 mRNA expression significantly decreased in hippocampal neurons of the Astragalus group, compared with the model group and vehicle control group (P 〈 0.05). CONCLUSION: Astragalus injection inhibited apoptosis-related JNK3 mRNA expression following oxygen-glucose deprivation and reintroduction, and accordingly played a role in inhibiting hippocampal neuronal apoptosis.
文摘Many patients with prostate cancer for whom androgen deprivation therapy (ADT) is indicated are young and desire to remain sexually active. In such patients, the side effects of androgen therapy on sexual function can be a source of serious reduction in overall quality of life. Providing the appropriate treatment options in this patient population is therefore essential. Nevertheless, treating such patients is challenging and an understanding of the underlying mechanisms of sexual physiology and pathophysiology is crucial to optimal patient care. In this paper, we reviewed what was known regarding the effects of ADT on sexual function in animal models and we also provided a detailed review on the effects of ADT on sexual health in humans and its treatment.
基金the National Natural Science Foundation of China, No.30670677
文摘BACKGROUND: Complex learning tasks result in a greater number of paradoxical sleep phases, which can improve memory. The effect of paradoxical sleep deprivation, induced by "flower pot" technique, on spatial reference memory and working memory require further research. OBJECTIVE: To observe the effect of progressive paradoxical sleep deprivation in rats, subsequent to learning, on memory using the Morris Water Maze. DESIGN, TIME AND SETTING: Controlled observation experiment. The experiment was performed at the Laboratory of Neurobiology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University from December 2006 to October 2007. MATERIALS: Twenty-eight, male, Wistar rats, 3-4 months old, were provided by the Experimental Animal Center of Lanzhou University. The Morris Water Maze and behavioral analyses system was purchased from Genheart Company, Beijing, China. METHODS: All animals, according to a random digits table, were randomly divided into paradoxical sleep deprivation, tank control, and home cage control groups. Paradoxical sleep deprivation was induced by the "flower pot" technique for 72 hours, housing the rats on small platforms over water. Rats in the "tank control" and "home cage control" groups were housed either in a tank with large platforms over the water or in normal cages without paradoxical sleep deprivation. MAIN OUTCOME MEASURES: Morris Water Maze was employed for task learning and spatial memory testing. Rats in all groups were placed at six random starting points each day for four consecutive days. Each placement was repeated for two trials; the first trial represented reference memory and the second working memory. Rats in the first trial were allowed to locate the submerged platform within 120 seconds. Data, including swimming distance, escape latency, swimming velocity, percentage of time in correct quarter, and memory scores were recorded and analyzed automatically by behavioral analyses systems for Morris Water Maze. RESULTS: Twenty-eight rats were included in the final analysis, without any loss. In the first trial, between day 2 and 4, escape latency and swimming distance increased significantly in the paradoxical sleep deprivation group compared to the home cage control and tank control groups (P 〈 0.01); percentage of time in correct quarter and memory scores, however, decreased in the paradoxical sleep deprivation group compared to the home cage control and tank control groups (P 〈 0.01). The escape latency, swimming distance, percentage of time in correct quarter, and memory scores in the second trial was not significantly different among the three groups (P 〉 0.05). CONCLUSION: Paradoxical sleep deprivation inhibits spatial reference memory, but not working memory.