Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. Th...Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. The immersion time was 15- 40 s for nanotubes and over 60 s for nanowires. The topography and crystalline structure of the nanowire arrays were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). It was found that the length and diameter of the Ni0.5Zn0.5Fe2O4 nanowires are related to the thickness of the AAM and the diameter of the pores. The results indicated that the Ni0.5Zn0.5Fe2O4 nanowires are uniform and parallel to each other.展开更多
A capillary-enforced template-based method has been applied to fabricate calcium copper titanate (CaCu3Ti4O12, CCTO) nanotubes (diameter ~200 nm) by filling sol-gel CCTO precursor solution into the nanochannels of por...A capillary-enforced template-based method has been applied to fabricate calcium copper titanate (CaCu3Ti4O12, CCTO) nanotubes (diameter ~200 nm) by filling sol-gel CCTO precursor solution into the nanochannels of porous anodic aluminum oxide (AAO) templates, subsequent heating for phase formation and fi- nally the removal of nano-channel templates by applying basic solution. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) equipped with Energy-dispersive X-ray spectroscopy (EDX) have been employed to characterize the morphology, structure, and composition of as-prepared nanotubes. XRD and selected-area electron diffraction (SAED) in-vestigations demonstrated that postannealed (750○C for 1 h) CCTO nanotubes were poly-crystalline with a cubic pseudo-perovskite cry- stal structure. The FE-SEM and TEM results showed that CCTO nanotubes were of uniform diameter (~200 nm) throughout their length. High resolution TEM (HRTEM) analysis confirm- ed that the obtained CCTO nanotubes are made of randomly aligned nano-particles 5-10 nm in size. EDX analysis demonstrated that stoichi- ometric CaCu3Ti4O12 was formed. The possible formation mechanism of CCTO nanotubes in the AAO template is discussed.展开更多
The effects of different cation concentrations and types on rheological property and stability of Guar, Xanthan, and Partially Hydrolyzed Polyacrylamide(HPAM) cross-linked gels were analyzed through experiments. Also,...The effects of different cation concentrations and types on rheological property and stability of Guar, Xanthan, and Partially Hydrolyzed Polyacrylamide(HPAM) cross-linked gels were analyzed through experiments. Also, a new approach was developed to reduce the negative effects of cation by application of multi-walled carbon nano-tubes(MWCNTs). The presence of cations in cross-linked gel system will reduce the viscosity of gel, the higher the cation concentration is, the lower the viscosity will be. The bivalent cation has a greater viscosity reduction effect on gel than monovalent cation. The stability of cross-linked gels is worse with cations, this situation becomes more serious under higher salinity. MWCNTs were added to HPAM gel, cross-linked by(3-Aminopropyl) triethoxysilane(APTES), they surrounded cations and removed them from polymers and reduced the reaction possibility. This method enhances the viscosity and breakdown pressure of cross-linked gels, improves the stability of HPAM cross-linked gel under different operating conditions, and can be applied to related drilling projects.展开更多
文摘Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. The immersion time was 15- 40 s for nanotubes and over 60 s for nanowires. The topography and crystalline structure of the nanowire arrays were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). It was found that the length and diameter of the Ni0.5Zn0.5Fe2O4 nanowires are related to the thickness of the AAM and the diameter of the pores. The results indicated that the Ni0.5Zn0.5Fe2O4 nanowires are uniform and parallel to each other.
文摘A capillary-enforced template-based method has been applied to fabricate calcium copper titanate (CaCu3Ti4O12, CCTO) nanotubes (diameter ~200 nm) by filling sol-gel CCTO precursor solution into the nanochannels of porous anodic aluminum oxide (AAO) templates, subsequent heating for phase formation and fi- nally the removal of nano-channel templates by applying basic solution. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) equipped with Energy-dispersive X-ray spectroscopy (EDX) have been employed to characterize the morphology, structure, and composition of as-prepared nanotubes. XRD and selected-area electron diffraction (SAED) in-vestigations demonstrated that postannealed (750○C for 1 h) CCTO nanotubes were poly-crystalline with a cubic pseudo-perovskite cry- stal structure. The FE-SEM and TEM results showed that CCTO nanotubes were of uniform diameter (~200 nm) throughout their length. High resolution TEM (HRTEM) analysis confirm- ed that the obtained CCTO nanotubes are made of randomly aligned nano-particles 5-10 nm in size. EDX analysis demonstrated that stoichi- ometric CaCu3Ti4O12 was formed. The possible formation mechanism of CCTO nanotubes in the AAO template is discussed.
文摘The effects of different cation concentrations and types on rheological property and stability of Guar, Xanthan, and Partially Hydrolyzed Polyacrylamide(HPAM) cross-linked gels were analyzed through experiments. Also, a new approach was developed to reduce the negative effects of cation by application of multi-walled carbon nano-tubes(MWCNTs). The presence of cations in cross-linked gel system will reduce the viscosity of gel, the higher the cation concentration is, the lower the viscosity will be. The bivalent cation has a greater viscosity reduction effect on gel than monovalent cation. The stability of cross-linked gels is worse with cations, this situation becomes more serious under higher salinity. MWCNTs were added to HPAM gel, cross-linked by(3-Aminopropyl) triethoxysilane(APTES), they surrounded cations and removed them from polymers and reduced the reaction possibility. This method enhances the viscosity and breakdown pressure of cross-linked gels, improves the stability of HPAM cross-linked gel under different operating conditions, and can be applied to related drilling projects.