Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real...Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.展开更多
The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used...The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used in industrial control. Based on the guide sleeve of hydrostatic seal of hydraulic cylinder, the reasonable number of oil chamber of guide sleeve is studied in this paper. ICEM CFD software and FLUENT simulation software are used to calculate and analyze the number of different oil chambers of guide sleeve of hydrostatic seal. The temperature field of piston rod with different moving speed, different initial pressure of oil chamber and oil film under different number of oil chambers is analyzed. The relationship between the pressure field and temperature field provides a better basis for optimizing the design of hydrostatic guide sleeve and helps to improve the servo drive cylinder.展开更多
The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure...The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.展开更多
The servo system actuated by oscillating pneumatic cylinder for X-Y plate is a multi-variable nonlinear control system. Its mathematical model is established, and nonlinear factors are analyzed. Due to the existence o...The servo system actuated by oscillating pneumatic cylinder for X-Y plate is a multi-variable nonlinear control system. Its mathematical model is established, and nonlinear factors are analyzed. Due to the existence of deadlock zone and the small damp of the pneumatic oscillating cylinder, it is likely to result in overshoot, and there is also certain steady-state error, so online modifying of proportion-integration-differentiation (PID) parameters is needed so as to achieve better control performance. Meanwhile considering the stability demand for long-term run, a fuzzy adaptive PID controller is designed. The result of hardware-inloop (HIL) test and real-time control experiment shows that the adaptive PID controller has desirable serfadaptability and robustness to external disturbance and to change of system parameters, and its control per- fonnance is better than that of traditional PID controllers.展开更多
Hydraulic cylinders are divided into single-rod asymmetric cylinders and double-rod symmetric cylinders. The single-rod asymmetric cylinder has the advantages of small size and simple structure,but its speed character...Hydraulic cylinders are divided into single-rod asymmetric cylinders and double-rod symmetric cylinders. The single-rod asymmetric cylinder has the advantages of small size and simple structure,but its speed characteristic is not symmetric. The double rod symmetric cylinder has the characteristic of symmetric speed,but it cannot be used in some special occasions. In this paper,one special hydraulic cylinder,a single-rod symmetric cylinder,is developed. Firstly,characters of this type of cylinder are introduced. Then,the system model is constructed by using one software which is Simulation X. Moreover,one single rod asymmetric cylinder is designed and the test rig using the symmetric valve to control single-rod symmetric or asymmetric cylinder is constructed. Both of the simulation and experimental results show that the symmetric valve control single-rod symmetric cylinder servo system is of symmetric speed characteristic,which can be used in practical occasion.展开更多
Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model referen...Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.展开更多
This paper presents the automatic guidance system of an agricultural tractor and the side shift control of the attached row crop cultivator using electro-hydraulic actuators. In order to simulate the dynamic behaviour...This paper presents the automatic guidance system of an agricultural tractor and the side shift control of the attached row crop cultivator using electro-hydraulic actuators. In order to simulate the dynamic behaviour of the tractor along with the attached cultivator, the modified bicycle model was adopted. Steering angle sensor, fibre optic gyroscope (FOG) and RTK-DGPS technologies are assumed for measurements of the steering angle, yaw rate and the lateral position of the tractor, respectively. The kinematics model was used for the implement. In this study four cascade controllers were designed and simulated for tractor guidance which consists ofPD, PD, P and PID controllers. Other PI and PID controllers also had been designed for implement side shifting purpose. Then, these two systems were combined and the performance of the whole system was evaluated through the simulation results. According to the results tractor reaches the desired path after less than 10 seconds. Simulations showed that the maximum deviation of the tractor from the desired path was about 5 cm within this period. And the cultivator blades would follow the predetermined path with steady state error of about 5 cm too.展开更多
The vessel heave motion caused by wave action increases the difficulty of installing offshore wind equipment.On-board wave heave compensation devices have therefore become increasingly critical in ensuring the stabili...The vessel heave motion caused by wave action increases the difficulty of installing offshore wind equipment.On-board wave heave compensation devices have therefore become increasingly critical in ensuring the stability and safety of the gangway and working platform.This study accordingly improves the compensation effect of such devices by developing a wave heave compensation model and designing an optimized backstepping control method.First,a model of the compensation system including the servo motor and electric cylinder is established by using the mechanism method.Second,a backstepping control method is designed to track the vessel heave motion,and particle swarm optimization is applied to optimize the control parameters.Finally,MATLAB/Simulink is used to simulate the application of the optimized backstepping controller,then regular and irregular heave motions are applied as input to a Stewart platform to evaluate the effectiveness of the control method.The experimental results show that the compensation efficiency provided by the proposed optimized backstepping control method is larger than 75.0%.展开更多
文摘Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.
基金supported by the National 863 Project(2011AA040701)
文摘The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used in industrial control. Based on the guide sleeve of hydrostatic seal of hydraulic cylinder, the reasonable number of oil chamber of guide sleeve is studied in this paper. ICEM CFD software and FLUENT simulation software are used to calculate and analyze the number of different oil chambers of guide sleeve of hydrostatic seal. The temperature field of piston rod with different moving speed, different initial pressure of oil chamber and oil film under different number of oil chambers is analyzed. The relationship between the pressure field and temperature field provides a better basis for optimizing the design of hydrostatic guide sleeve and helps to improve the servo drive cylinder.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61105086)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2010-MS-12)Hubei Province Natural Science Foundation(Grant No.2010CDB0 3405)
文摘The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.
基金Supported by Japanese SMC Corporation with contract (No. 05-07)
文摘The servo system actuated by oscillating pneumatic cylinder for X-Y plate is a multi-variable nonlinear control system. Its mathematical model is established, and nonlinear factors are analyzed. Due to the existence of deadlock zone and the small damp of the pneumatic oscillating cylinder, it is likely to result in overshoot, and there is also certain steady-state error, so online modifying of proportion-integration-differentiation (PID) parameters is needed so as to achieve better control performance. Meanwhile considering the stability demand for long-term run, a fuzzy adaptive PID controller is designed. The result of hardware-inloop (HIL) test and real-time control experiment shows that the adaptive PID controller has desirable serfadaptability and robustness to external disturbance and to change of system parameters, and its control per- fonnance is better than that of traditional PID controllers.
基金Supported by the National Natural Science Foundation of China(No.51505289)
文摘Hydraulic cylinders are divided into single-rod asymmetric cylinders and double-rod symmetric cylinders. The single-rod asymmetric cylinder has the advantages of small size and simple structure,but its speed characteristic is not symmetric. The double rod symmetric cylinder has the characteristic of symmetric speed,but it cannot be used in some special occasions. In this paper,one special hydraulic cylinder,a single-rod symmetric cylinder,is developed. Firstly,characters of this type of cylinder are introduced. Then,the system model is constructed by using one software which is Simulation X. Moreover,one single rod asymmetric cylinder is designed and the test rig using the symmetric valve to control single-rod symmetric or asymmetric cylinder is constructed. Both of the simulation and experimental results show that the symmetric valve control single-rod symmetric cylinder servo system is of symmetric speed characteristic,which can be used in practical occasion.
文摘Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.
文摘This paper presents the automatic guidance system of an agricultural tractor and the side shift control of the attached row crop cultivator using electro-hydraulic actuators. In order to simulate the dynamic behaviour of the tractor along with the attached cultivator, the modified bicycle model was adopted. Steering angle sensor, fibre optic gyroscope (FOG) and RTK-DGPS technologies are assumed for measurements of the steering angle, yaw rate and the lateral position of the tractor, respectively. The kinematics model was used for the implement. In this study four cascade controllers were designed and simulated for tractor guidance which consists ofPD, PD, P and PID controllers. Other PI and PID controllers also had been designed for implement side shifting purpose. Then, these two systems were combined and the performance of the whole system was evaluated through the simulation results. According to the results tractor reaches the desired path after less than 10 seconds. Simulations showed that the maximum deviation of the tractor from the desired path was about 5 cm within this period. And the cultivator blades would follow the predetermined path with steady state error of about 5 cm too.
基金supported by the National Natural Science Foundation of China(Grant No.62073213).
文摘The vessel heave motion caused by wave action increases the difficulty of installing offshore wind equipment.On-board wave heave compensation devices have therefore become increasingly critical in ensuring the stability and safety of the gangway and working platform.This study accordingly improves the compensation effect of such devices by developing a wave heave compensation model and designing an optimized backstepping control method.First,a model of the compensation system including the servo motor and electric cylinder is established by using the mechanism method.Second,a backstepping control method is designed to track the vessel heave motion,and particle swarm optimization is applied to optimize the control parameters.Finally,MATLAB/Simulink is used to simulate the application of the optimized backstepping controller,then regular and irregular heave motions are applied as input to a Stewart platform to evaluate the effectiveness of the control method.The experimental results show that the compensation efficiency provided by the proposed optimized backstepping control method is larger than 75.0%.