Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offis...Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offish to be supplied, most seafood processing companies have yet to installautomation equipment. Such absence of automation equipment for seafoodprocessing incurs a considerable cost regarding labor force, economy, andtime. Moreover, workers responsible for fish processing are exposed to risksbecause fish processing tasks require the use of dangerous tools, such aspower saws or knives. To solve these problems observed in the fish processingfield, this study proposed a fish cutting point prediction method based onAI machine vision and target weight. The proposed method performs threedimensional(3D) modeling of a fish’s form based on image processing techniquesand partitioned random sample consensus (RANSAC) and extracts 3Dfeature information. Then, it generates a neural network model for predictingfish cutting points according to the target weight by performing machinelearning of the extracted 3D feature information and measured weight information.This study allows for the direct cutting of fish based on cutting pointspredicted by the proposed method. Subsequently, we compared the measuredweight of the cut pieces with the target weight. The comparison result verifiedthat the proposed method showed a mean error rate of approximately 3%.展开更多
A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC mac...A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.展开更多
Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determin...Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining.展开更多
The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing mach...The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from -0.975 mm to +0.628 mm and orientation error is from -0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a 'large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools.展开更多
During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transf...During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.展开更多
Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of ma...Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
We study the classical single machine scheduling problem but with uncertainty. A robust optimization model is presented, and an effective deep cut is derived. Numerical experiments show effectiveness of the derived cut.
The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the ...The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.展开更多
The implementation methods of computer aided design,drawing and drawing management for plate cuttingmachine are discussed. The system structure for plate cutting- machine design is put forward firstly, then some key t...The implementation methods of computer aided design,drawing and drawing management for plate cuttingmachine are discussed. The system structure for plate cutting- machine design is put forward firstly, then some key technologies and their implementation methods are introduced, which include the structure management of graphics, the unification of graph and design calculation, information share of part, assemble and drawing management system, and movement simulation of key components.展开更多
The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligen...The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligent models. For this purpose, a systematic experimental work was performed. A database of the carbonate and granite rocks was established, in which the physical and mechanical properties of these rocks (i.e., UCS, elastic modulus, Mohs hardness, and Schmiazek abrasivity factor) and the operational parameters (i.e., depth of cut and feed rate) were considered as the input parameters. The predictive models were developed incorporating a combination of the multi-layered perceptron artificial neural networks and genetic algorithm (GANN-BP) and the support vector regression method and Cuckoo optimization algorithm (COA-SVR). The results obtained indicated that the performance of the developed GANN-BP and COA-SVR models was close to each other and that these models had good agreements with the measured values. These results also showed that these proposed models were suitable tools in evaluating the performance of cutting machines.展开更多
The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w ear...The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w earing greatly, and the surface quality of the product is improved to the utmost extent. The design mechanism of the optimal cutting movement trajectory system structure is analyzed incisively. At the same time, the principle of the complex movement of horizontal movement and swing is researched. The optimal design scheme of th e cutting movement trajectory system structure is set up. The choice method to g et the superior value of the movement system structure is found. The mathematics function formula is established which exhibits the relationship between the par ameter of the complex movement structure and that of the system movement structu re. By the formula, the precision value of the offset can be figured out. The r ule is adapted to different types of energy-saving stone-sawing machines. The complex movement structure of horizontal movement and swing is designed to f ulfill the cutting movement. It can make the saw frame move up with the hanging pod deviating from the vertical direction. At the same time, the saw frame have a down-movement. Then the sum of the two movements is near to zero, and the saw blade and the stone can keep in touch during the whole horizontal cutting. The result is that the actual cutting efficiency is 100%. Also, when the hanging pod moves to the limited position, the saw frame can keep the original inertia, and continue to swing up. It makes the back-cutting have high energy-storing. The optimal design of the eccentricity balance wheel is done. The mathematics fo rmula for expressing the movement system structure is deduced. The calculation m ethod and formula is set up which is used to get the value of important componen ts such as offset. The choice method and formula of elasticity distortion coeffi cient is set up when the saw frame moves smoothly. It is concluded that the offs et is the key dimension to actualize the optimal cutting movement trajectory. The resolving of the technical problems discussed above offers a theoretic and technical basis for optimal design of energy-saving stone-sawing machines.展开更多
The large thermal cutting equipment——The DHG. CNC numerical control plasma cutting machine is produced by The Ha’erbin Welding & Cutting Equipment Co. It specializes in the precise formation and baiting of nonf...The large thermal cutting equipment——The DHG. CNC numerical control plasma cutting machine is produced by The Ha’erbin Welding & Cutting Equipment Co. It specializes in the precise formation and baiting of nonferrous boards and thin carbon steel plates at a high speed. It avoids the disadvantage of flame cutting, which cannot cut nonferrous and thin steel plates.展开更多
The X-axis cutting head and the cantilever is fixed in the traditional cantilever CNC flame cutting machine,then the workspace is too big when we used it.So this paper wants to design a new type of CNC flame cutting m...The X-axis cutting head and the cantilever is fixed in the traditional cantilever CNC flame cutting machine,then the workspace is too big when we used it.So this paper wants to design a new type of CNC flame cutting machine which the X-axis of the cantilever is fixed and only the cutting head moving when people using it,while the workspace will be reduced.The main tasks include determining the transmission components of the X-axis,selecting servo system,designing guide rail.展开更多
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative des...Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultra- precision and micro manufacturing purposes. Implemen- tation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation tech- niques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algo- rithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in- process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) applica- tion exemplars on adaptive smart machining.展开更多
Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the...Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance展开更多
A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating u...A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under non-cutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear.展开更多
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plast...There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.展开更多
The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing proc...The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing process.In this paper,a hobbing machining model with tool-shifting characteristics was proposed to solve the problems of cutting force fluctuation and inconsistency of tooth profile envelope accuracy at different positions of the pitch curve in noncircular gear hobbing.Based on the unit cutting force coefficient method,the undeformed chip volume generated by interrupted cutting was used to characterize the fluctuation trend of the hobbing force.The fluctuation characteristics of the cutting force generated by different hobbing models were compared and analyzed.Using the equivalent gear tooth and hob slotting numbers,an analysis model of the tooth profile envelope error of the noncircular gear was constructed.Subsequently,the tooth profile envelope errors at different positions of the pitch curve were compared and analyzed based on the constructed model.The transmission structure of the electronic gearbox was constructed based on the proposed hobbing model,and the hobbing experiment was conducted based on the selfdeveloped noncircular gear CNC hobbing system.This paper proposes a hobbing method that can effectively suppress the fluctuation of the peak and whole circumference cutting force and reduce the maximum envelope error of the whole circumference gear teeth.展开更多
Machining errors caused by cutting force are studied in this paper,and an algorithm to simulate errors is putted forward. In the method,continuous machining process is separated into many machining moments. The deform...Machining errors caused by cutting force are studied in this paper,and an algorithm to simulate errors is putted forward. In the method,continuous machining process is separated into many machining moments. The deformation of work-piece and cutter at every moment is calculated by finite element method. The machined work-piece is gained by Boolean operation between deformed work-piece and cutter. By analyzing data of final work-piece,machining errors are predicted. The method is proved true by experiment.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (NRF-2020R1I1A3073313).
文摘Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offish to be supplied, most seafood processing companies have yet to installautomation equipment. Such absence of automation equipment for seafoodprocessing incurs a considerable cost regarding labor force, economy, andtime. Moreover, workers responsible for fish processing are exposed to risksbecause fish processing tasks require the use of dangerous tools, such aspower saws or knives. To solve these problems observed in the fish processingfield, this study proposed a fish cutting point prediction method based onAI machine vision and target weight. The proposed method performs threedimensional(3D) modeling of a fish’s form based on image processing techniquesand partitioned random sample consensus (RANSAC) and extracts 3Dfeature information. Then, it generates a neural network model for predictingfish cutting points according to the target weight by performing machinelearning of the extracted 3D feature information and measured weight information.This study allows for the direct cutting of fish based on cutting pointspredicted by the proposed method. Subsequently, we compared the measuredweight of the cut pieces with the target weight. The comparison result verifiedthat the proposed method showed a mean error rate of approximately 3%.
文摘A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.
文摘Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining.
基金Supported by National Natural Science Foundation of China(Grant No.51175099)
文摘The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from -0.975 mm to +0.628 mm and orientation error is from -0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a 'large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools.
基金Supported by National Natural Science Foundation of China (Grant Nos.51105119,51235003)
文摘During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.
文摘Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
文摘We study the classical single machine scheduling problem but with uncertainty. A robust optimization model is presented, and an effective deep cut is derived. Numerical experiments show effectiveness of the derived cut.
文摘The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.
基金This project is supported by National 863/CIMS plan (No.863-511-507) and Natural Science Foundation of Anhui Province (No.01042209)
文摘The implementation methods of computer aided design,drawing and drawing management for plate cuttingmachine are discussed. The system structure for plate cutting- machine design is put forward firstly, then some key technologies and their implementation methods are introduced, which include the structure management of graphics, the unification of graph and design calculation, information share of part, assemble and drawing management system, and movement simulation of key components.
基金Project(11039)supported by Shahrood University of Technology,Iran
文摘The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligent models. For this purpose, a systematic experimental work was performed. A database of the carbonate and granite rocks was established, in which the physical and mechanical properties of these rocks (i.e., UCS, elastic modulus, Mohs hardness, and Schmiazek abrasivity factor) and the operational parameters (i.e., depth of cut and feed rate) were considered as the input parameters. The predictive models were developed incorporating a combination of the multi-layered perceptron artificial neural networks and genetic algorithm (GANN-BP) and the support vector regression method and Cuckoo optimization algorithm (COA-SVR). The results obtained indicated that the performance of the developed GANN-BP and COA-SVR models was close to each other and that these models had good agreements with the measured values. These results also showed that these proposed models were suitable tools in evaluating the performance of cutting machines.
文摘The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w earing greatly, and the surface quality of the product is improved to the utmost extent. The design mechanism of the optimal cutting movement trajectory system structure is analyzed incisively. At the same time, the principle of the complex movement of horizontal movement and swing is researched. The optimal design scheme of th e cutting movement trajectory system structure is set up. The choice method to g et the superior value of the movement system structure is found. The mathematics function formula is established which exhibits the relationship between the par ameter of the complex movement structure and that of the system movement structu re. By the formula, the precision value of the offset can be figured out. The r ule is adapted to different types of energy-saving stone-sawing machines. The complex movement structure of horizontal movement and swing is designed to f ulfill the cutting movement. It can make the saw frame move up with the hanging pod deviating from the vertical direction. At the same time, the saw frame have a down-movement. Then the sum of the two movements is near to zero, and the saw blade and the stone can keep in touch during the whole horizontal cutting. The result is that the actual cutting efficiency is 100%. Also, when the hanging pod moves to the limited position, the saw frame can keep the original inertia, and continue to swing up. It makes the back-cutting have high energy-storing. The optimal design of the eccentricity balance wheel is done. The mathematics fo rmula for expressing the movement system structure is deduced. The calculation m ethod and formula is set up which is used to get the value of important componen ts such as offset. The choice method and formula of elasticity distortion coeffi cient is set up when the saw frame moves smoothly. It is concluded that the offs et is the key dimension to actualize the optimal cutting movement trajectory. The resolving of the technical problems discussed above offers a theoretic and technical basis for optimal design of energy-saving stone-sawing machines.
文摘The large thermal cutting equipment——The DHG. CNC numerical control plasma cutting machine is produced by The Ha’erbin Welding & Cutting Equipment Co. It specializes in the precise formation and baiting of nonferrous boards and thin carbon steel plates at a high speed. It avoids the disadvantage of flame cutting, which cannot cut nonferrous and thin steel plates.
文摘The X-axis cutting head and the cantilever is fixed in the traditional cantilever CNC flame cutting machine,then the workspace is too big when we used it.So this paper wants to design a new type of CNC flame cutting machine which the X-axis of the cantilever is fixed and only the cutting head moving when people using it,while the workspace will be reduced.The main tasks include determining the transmission components of the X-axis,selecting servo system,designing guide rail.
基金Supported by the UK Technology Strategy Board(TSB)(SEEM Project,Contract No.:BD266E)Innovate UK(KTP Project,Contract No.:9277)
文摘Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultra- precision and micro manufacturing purposes. Implemen- tation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation tech- niques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algo- rithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in- process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) applica- tion exemplars on adaptive smart machining.
基金Supported by National Natural Science Foundation of China(Grant No.51275302)China Postdoctoral Science Foundation Special Funded Project(Grant No.2016T90370)China Postdoctoral Science Foundation(Grant No.2015M580327)
文摘Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance
文摘A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under non-cutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear.
基金the Research Committee of The Hong Kong Polytechnic University and the Innovation Technology Commission of The Hong Kong SAR Government for their financial support of the Hong Kong Partner State Key Laboratory of Ultra-Precision Machining Technology
文摘There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075142 and U22B2084).
文摘The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing process.In this paper,a hobbing machining model with tool-shifting characteristics was proposed to solve the problems of cutting force fluctuation and inconsistency of tooth profile envelope accuracy at different positions of the pitch curve in noncircular gear hobbing.Based on the unit cutting force coefficient method,the undeformed chip volume generated by interrupted cutting was used to characterize the fluctuation trend of the hobbing force.The fluctuation characteristics of the cutting force generated by different hobbing models were compared and analyzed.Using the equivalent gear tooth and hob slotting numbers,an analysis model of the tooth profile envelope error of the noncircular gear was constructed.Subsequently,the tooth profile envelope errors at different positions of the pitch curve were compared and analyzed based on the constructed model.The transmission structure of the electronic gearbox was constructed based on the proposed hobbing model,and the hobbing experiment was conducted based on the selfdeveloped noncircular gear CNC hobbing system.This paper proposes a hobbing method that can effectively suppress the fluctuation of the peak and whole circumference cutting force and reduce the maximum envelope error of the whole circumference gear teeth.
基金Supported by Science & Technology Sponsoring Project of Ministry of Education(105161)
文摘Machining errors caused by cutting force are studied in this paper,and an algorithm to simulate errors is putted forward. In the method,continuous machining process is separated into many machining moments. The deformation of work-piece and cutter at every moment is calculated by finite element method. The machined work-piece is gained by Boolean operation between deformed work-piece and cutter. By analyzing data of final work-piece,machining errors are predicted. The method is proved true by experiment.