The objective of this paper is to present the current organization of the Emergency Procedures including Emergency Operating Procedures (EOP) and Severe Accident Management Guidelines (SAMG) in Kozloduy Nuclear Power ...The objective of this paper is to present the current organization of the Emergency Procedures including Emergency Operating Procedures (EOP) and Severe Accident Management Guidelines (SAMG) in Kozloduy Nuclear Power Plant (KNPP) as a function of the severity of the accident conditions. Special attention is paid to SAMG. It is described when the SAMG are used and at which conditions in a transition between the EOPs and the SAMG should be made. The Critical Safety Function Restoration Guidelines and their connections with SAMGs and EOPs are also discussed. The arrangement of SAMG is described in detail, since in the KNPP exist 2 types of SAMGs for Main Control Room (MCR) and for the Accident Management Centre (AMC) and they contain the same strategies, but they are different in format. Both types are symptom oriented procedures, but those for MCR are in 2-column-format with interconnections, whereas those for the AMC are developed in a logical manner and simplified for people, who take decisions. In the paper, they are also discussed the adopted strategies in existing SAMG that should be followed to recover from a damaged core condition and to prevent or mitigate the release of fission products. In the paper, they are also described a number of technical measures for management and mitigation of severe accidents, which are implemented in KNPP before and after the Fukushima accident. Many of them are common for WWER-1000 type of reactors, but some of them are unique and plant specific. This information can be useful for operators of other WWER type reactors or even PWR reactors.展开更多
文摘The objective of this paper is to present the current organization of the Emergency Procedures including Emergency Operating Procedures (EOP) and Severe Accident Management Guidelines (SAMG) in Kozloduy Nuclear Power Plant (KNPP) as a function of the severity of the accident conditions. Special attention is paid to SAMG. It is described when the SAMG are used and at which conditions in a transition between the EOPs and the SAMG should be made. The Critical Safety Function Restoration Guidelines and their connections with SAMGs and EOPs are also discussed. The arrangement of SAMG is described in detail, since in the KNPP exist 2 types of SAMGs for Main Control Room (MCR) and for the Accident Management Centre (AMC) and they contain the same strategies, but they are different in format. Both types are symptom oriented procedures, but those for MCR are in 2-column-format with interconnections, whereas those for the AMC are developed in a logical manner and simplified for people, who take decisions. In the paper, they are also discussed the adopted strategies in existing SAMG that should be followed to recover from a damaged core condition and to prevent or mitigate the release of fission products. In the paper, they are also described a number of technical measures for management and mitigation of severe accidents, which are implemented in KNPP before and after the Fukushima accident. Many of them are common for WWER-1000 type of reactors, but some of them are unique and plant specific. This information can be useful for operators of other WWER type reactors or even PWR reactors.