The chemical oxygen demand (COD) is selected as the index in this paper. The system dynamics method is used to analyze the emission right price of medical sewage, the boundary of the emission right price system is det...The chemical oxygen demand (COD) is selected as the index in this paper. The system dynamics method is used to analyze the emission right price of medical sewage, the boundary of the emission right price system is determined, and the system dynamics model of the initial emission right of medical sewage is constructed, in which the system is divided into water resources subsystem, population subsystem, economic subsystem and social subsystem. It is expected to expand the theory of the system modeling of the initial discharge right of medical sewage, and to provide the basis for the relevant decision of the environmental management authorities.展开更多
The dissolved oxygen content in water is an important indicator for assessing the quality of the water environment,and maintaining a certain amount of dissolved oxygen is essential for the healthy development of the e...The dissolved oxygen content in water is an important indicator for assessing the quality of the water environment,and maintaining a certain amount of dissolved oxygen is essential for the healthy development of the ecological environment.When a water body is anoxic,the activity of anaerobic microorganisms increases and organic matter is decomposed to produce a large number of blackening and odorizing substances,resulting in black and odorous water bodies,which is a very common and typical phenomenon in China.Presently,there is still a relatively universal occurrence of illicitly connected stormwater and sewage pipes in the urban drainage pipe network in China,which makes oxygen-consuming substances be directly discharged into rivers through stormwater pipes and consume the dissolved oxygen in the water bodies,resulting in an oxygen deficiency of the water.This induces seasonal or year-round black and stink phenomena in urban rivers.Hence,identifying high oxygen-consuming substances,which lays the foundation for the subsequent removal of oxygen-consuming substances,is essential.Through a series of comparisons of water quality indicators and analysis of organic characteristics,it was found that the oxygen consumption capacity of domestic sewage was higher than that of industrial wastewater in the selected area of this study,and the oxygen-consuming substances of domestic sewage were small molecular amino acids.By comparing 20 conventional free amino acids,it was found that seven of them consumed oxygen easily,and compared with chemical oxygen consumption,biological oxygen consumption was in a leading position.展开更多
Aiming to resolve the problem that conventional sewage source heat pump systems cannot satisfy heat peak loads of buildings,a new idea that the freezing latent heat is exacted as the auxiliary heat source at the peak ...Aiming to resolve the problem that conventional sewage source heat pump systems cannot satisfy heat peak loads of buildings,a new idea that the freezing latent heat is exacted as the auxiliary heat source at the peak heat load is proposed.First,on the basis of sewage characteristics,a freezing latent heat exchanger is developed to safely eliminate ice,continuously extract heat and remove sewage soft-dirt.A reasonable form of the urban sewage source heat pump system with freezing latent heat collection is presented.Then,the feasibility of the system is theoretically analyzed.The calculation results under typical operating conditions show that the heating ability of the new system is higher than that of the conventional one and the ratio of these two highest heating rates is between 4.5 and 8.7,which proves that the new system has great application potential in cold regions.展开更多
A pilot test is carried out to treat Beijing suburb campus sewage by using integrated constructed wetland system, which combines three systems that are multi-level complex constructed wetland system, buried integratio...A pilot test is carried out to treat Beijing suburb campus sewage by using integrated constructed wetland system, which combines three systems that are multi-level complex constructed wetland system, buried integration pretreatment system and wetland landscape system. Results show that the integrated system has a good pollutant removal efficiency: COD is mainly removed in the integration pretreatment system with an average removal rate of 96.87%; as NH4-N, TN and TP are mainly removed in the multi-level complex constructed wetland system, the average concentrations in effluent of COD, NH4-N, TN and TP are 45.58, 19.51, 31.9 and 1.49 mg/L, respectively; the Wetland landscape system also plays a role of depth processing, as the average concentrations in effluent of COD, NH4-N and TP are 13.33, 0.34 and 0.53 mg/L, respectively.展开更多
Chlorination has been recognized as an efficient and economically favorable method for treating clogging in drip emitters caused by biological growth during sewage application. Further important criteria for determini...Chlorination has been recognized as an efficient and economically favorable method for treating clogging in drip emitters caused by biological growth during sewage application. Further important criteria for determining an optimal chlorination scheme are the different responses of crops to the chloride added into the soil through chlorination. During two seasons in 2008 and 2009, field experiments were conducted in a solar-heated greenhouse with drip irrigation systems applying secondary sewage effluent to tomato plants to investigate the influences of chlorine injection intervals and levels on plant growth, yield, fruit quality, and emitter clogging. Injection intervals ranging from 2 to 8 wk and injection concentrations ranging 2-50 mg L-1 of free chlorine residual at the end of the laterals were used. For the 2008 experiments, the yield from the treatments of sewage application with chlorination was 7.5% lower than the yield from the treatment of sewage application without chlorination, while the yields for the treatments with and without chlorination were similar for the 2009 experiments. The statistical tests indicated that neither the chlorine injection intervals and concentrations nor the interactions between the two significantly influenced plant height, leaf area, or tomato yield for both years. The qualities of the fruit in response to chlorination were parameter-dependent. Chlorination did not significantly influence the quality of ascorbic acid, soluble sugar, or soluble acids, but the interaction between the chlorine injection interval and the chlorine concentration significantly influenced the levels of soluble solids. It was also confirmed that chlorination was an effective method for reducing biological clogging. These results suggested that chlorination is safe for a crop that has a moderate sensitivity to chlorine, like tomato, and can maintain a high level of performance in drip irrigation systems applying sewage effluent.展开更多
A long-term field experiment was carried out with a wheat-maize rotation system to investigate the accumulation and bioavailability of heavy metals in a calcareous soil at different rates of sewage sludge amendment. T...A long-term field experiment was carried out with a wheat-maize rotation system to investigate the accumulation and bioavailability of heavy metals in a calcareous soil at different rates of sewage sludge amendment. There are significant linear correlations between the contents of Hg, Zn, Cu, Pb, and Cd in soil and sewage sludge amendment rates. By increasing 1 ton of applied sludge per hectare per year in soil, the contents of Hg, Zn, Cu, Pb, and Cd in soil increased by 6.20, 619, 92.9, 49.2, and 0.500 μg kg–1, respectively. For Hg, sewage sludge could be safely applied to the soil for 18 years at an application rate of 7.5 t ha–1 before content exceeded the soil environmental quality standards in China(1 mg kg–1). The safe application period for Zn is 51 years and is even longer for other heavy metals(112 years for Cu, 224 years for Cd, and 902 years for Pb) at an application rate of 7.5 t ha–1 sewage sludge. The contents of Zn and Ni in wheat grains and Zn, Cu, and Cr in maize grains increased linearly with increasing sewage sludge amendment rates. The contents of Zn, Cr, and Ni in wheat straws and Zn, Cu, and As in maize straws were positively correlated with sewage sludge amendment rates, while the content of Cu in wheat straws and Cr in maize straws showed the opposite trend. The bioconcentration factors of the heavy metals in wheat and maize grains were found to be in the order of Zn>Cu>Cd>Hg>Cr=Ni>Pb>As. Furthermore, the bioconcentration factors of heavy metals in wheat were greater than those in maize, indicating that wheat is more sensitive than maize as an indicator plant. These results will be helpful in developing the critical loads for sewage sludge amendment in calcareous soils.展开更多
In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results sh...In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.展开更多
Turtle-breeding wastewater and domestic fecal sewage were treated by means of soil cultivating system. Results indicated that more than 50% CODCr and BOD5, of wastewaters were removed, removal rates of NH4+ -N could r...Turtle-breeding wastewater and domestic fecal sewage were treated by means of soil cultivating system. Results indicated that more than 50% CODCr and BOD5, of wastewaters were removed, removal rates of NH4+ -N could reach about 70%-80%, but PO43- could not be removed. The thesis analyzed functional mechanisms for pollutants and put forward main elements affecting treatment efficiencies, thus provided conditions for further research.展开更多
[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dos...[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dosing lime and influence of the constraint factor were stud- ied. [ Result] Lime precipitation method treating high-concentration phosphorus wastewater could not only decline cost of phosphorus removal by chemical method, but also reach better treatment effect under suitable stirring and precipitation conditions by controlling alkalinity and pH. Phosphor- us content of chemical sludge after treatment could reach 9% -12%, with higher recyclable value. E Conclusion] Lime method treating phosphorus- rich sewage was more economic than low-concentration phosphorus sewage, and had very great potential for recycling phosphorus.展开更多
To confirm the rheological characteristic of sewage in the research and application of urban sewage source heat pump system, the viscosity of sewage was investigated. The tube-type rheometer was used in this experimen...To confirm the rheological characteristic of sewage in the research and application of urban sewage source heat pump system, the viscosity of sewage was investigated. The tube-type rheometer was used in this experimental study, and the sewage was treated as homogeneous non-Newtonian fluid. In addition, the relational expression between viscosity parameters was developed, and the function of apparent viscosity was obtained. It is concluded that the viscosity characteristic of sewage is influenced largely by complex mixture in sewage, and the sewage has the characteristic of sheared densification fluid.展开更多
A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. ...A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.展开更多
The rapid spread of the coronavirus disease(COVID-19)pandemic in over 200 countries poses a substantial threat to human health.Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which causes COVID-19,can be d...The rapid spread of the coronavirus disease(COVID-19)pandemic in over 200 countries poses a substantial threat to human health.Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which causes COVID-19,can be discharged with feces into the drainage system.However,a comprehensive understanding of the occurrence,presence,and potential transmission of SARS-CoV-2 in sewers,especially in community sewers,is still lacking.This study investigated the virus occurrence by viral nucleic acid testing in vent stacks,septic tanks,and the main sewer outlets of community where confirmed patients had lived during the early days of the epidemic in Wuhan,China.The results indicated that the risk of long-term emission of SARS-CoV-2 to the environment via vent stacks of buildings was low after confirmed patients were hospitalized.SARS-CoV-2 were mainly detected in the liquid phase,as opposed to being detected in aerosols,and its RNA in the sewage of septic tanks could be detected for only four days after confirmed patients were hospitalized.The surveillance of SARS-CoV-2 in sewage could be a sensitive indicator for the possible presence of asymptomatic patients in the community,though the viral concentration could be diluted more than ten times,depending on the sampling site,as indicated by the Escherichia coli test.The comprehensive investigation of the community sewage drainage system is helpful to understand the occurrence characteristics of SARS-CoV-2 in sewage after excretion with feces and the feasibility of sewage surveillance for COVID-19 pandemic monitoring.展开更多
To better remove the contamination on the surface of a heat-exchanger in urban sewage source heat pump system (USSHPS), this paper analyzes the feasibility of strong self-flushing on the basis of experiments and pre...To better remove the contamination on the surface of a heat-exchanger in urban sewage source heat pump system (USSHPS), this paper analyzes the feasibility of strong self-flushing on the basis of experiments and presents a new on-line self-flushing technique, which alternately flushes part of heat transfer tubes. In addition, operation principles and the structure of the new heat-exchanger are introduced and the feasible economi- cal and technological cleaning plans are given by design calculation and scheme comparison. The result shows that keeping each tube washed for one minute with 5 m/s, the operating cost is lower than ¥5 and when one flushing pump ahemately flushes 10-20 heat exchangers, the saved costs of flushing 10 tubes alternately are over 4 times of the increased costs.展开更多
1.Introduction The urban sewage treatment system,including sewage pipe networks and sewage treatment plants,is an important infrastructure to ensure urban social and economic operation.In the past few decades,due to t...1.Introduction The urban sewage treatment system,including sewage pipe networks and sewage treatment plants,is an important infrastructure to ensure urban social and economic operation.In the past few decades,due to the unremitting efforts of the Chinese government,the construction of China’s urban sewage treatment infrastructure has developed rapidly[1].展开更多
Based on the characteristics of sewage from beauty salons,a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditio...Based on the characteristics of sewage from beauty salons,a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditions of the system.The results show that with the increase of sewage temperature and flow,the performance of the system also increases.In summer conditions,the system provides cooling,recovers waste heat and condensed heat from sewage,with a COP value of 8.97;in winter conditions,the system heats and produces hot water,with a COP value of 2.44;in transitional seasons,only hot water is produced.The COP value is 2.75.Compared with the traditional systems which refers to the air source heat pump and hot water boiler system currently used in beauty salons,this system can save energy by 50.9%.展开更多
Pollution brought by rural domestic sewage has become increasingly serious, so it is imperative to fi gure out economical and efficient solutions. On the basis of comparison between rural domestic sewage treatment mea...Pollution brought by rural domestic sewage has become increasingly serious, so it is imperative to fi gure out economical and efficient solutions. On the basis of comparison between rural domestic sewage treatment means in China and abroad, actual conditions of countryside, current situation and features of domestic sewage, this paper adopted the compound ecological wetland system consisting of anaerobic and aerobic units, ecological floating bed and artifi cial wetland, so as to remove nitrogen and phosphorus efficiently, achieve the goal of low operation and construction cost and less land use.展开更多
Different from rivers in humid areas,the variability of riverine CO_(2) system in arid areas is heavily impacted by anthropogenic disturbance with the increasing urbanization and water withdrawals.In this study,the wa...Different from rivers in humid areas,the variability of riverine CO_(2) system in arid areas is heavily impacted by anthropogenic disturbance with the increasing urbanization and water withdrawals.In this study,the water chemistry and the controls of carbonate system in an urbanized river(the Fenhe River)on the semi-arid Loess Plateau were analyzed.The water chemistry of the river water showed that the high dissolved inorganic carbon(DIC)concentration(about 37 mg L^(-1))in the upstream with a karst land type was mainly sourced from carbonate weathering involved by H_(2)CO_(3) and H_(2)SO_(4),resulting in an oversaturated partial pressure of CO_(2)(pCO_(2))(about 800μatm).In comparison,damming resulted in the widespread appearance of non-free flowing river segments,and aquatic photosynthesis dominated the DIC and pCO_(2) spatiality demonstrated by the enriched stable isotope of DIC(δ^(13)CDIC).Especially in the mid-downstream flowing through major cities in warm and low-runoff August,some river segments even acted as an atmospheric CO_(2) sink.The noteworthy is wastewater input leading to a sudden increase in DIC(>55 mg L^(-1))and pCO_(2)(>4500μatm)in the downstream of Taiyuan City,and in cold November the increased DIC even extended to the outlet of the river.Our results highlight the effects of aquatic production induced by damming and urban sewage input on riverine CO_(2) system in semi-arid areas,and reducing sewage discharge may mitigate CO_(2) emission from the rivers.展开更多
This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analy...This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.展开更多
This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric an...This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.展开更多
To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded s...To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.展开更多
文摘The chemical oxygen demand (COD) is selected as the index in this paper. The system dynamics method is used to analyze the emission right price of medical sewage, the boundary of the emission right price system is determined, and the system dynamics model of the initial emission right of medical sewage is constructed, in which the system is divided into water resources subsystem, population subsystem, economic subsystem and social subsystem. It is expected to expand the theory of the system modeling of the initial discharge right of medical sewage, and to provide the basis for the relevant decision of the environmental management authorities.
基金supported by the Key Research and Development Program of Guangdong Province(No.2020B1111350001)the National Key Research and Development Program of China(Nos.2021YFC3200700 and 2021YFC3200702)。
文摘The dissolved oxygen content in water is an important indicator for assessing the quality of the water environment,and maintaining a certain amount of dissolved oxygen is essential for the healthy development of the ecological environment.When a water body is anoxic,the activity of anaerobic microorganisms increases and organic matter is decomposed to produce a large number of blackening and odorizing substances,resulting in black and odorous water bodies,which is a very common and typical phenomenon in China.Presently,there is still a relatively universal occurrence of illicitly connected stormwater and sewage pipes in the urban drainage pipe network in China,which makes oxygen-consuming substances be directly discharged into rivers through stormwater pipes and consume the dissolved oxygen in the water bodies,resulting in an oxygen deficiency of the water.This induces seasonal or year-round black and stink phenomena in urban rivers.Hence,identifying high oxygen-consuming substances,which lays the foundation for the subsequent removal of oxygen-consuming substances,is essential.Through a series of comparisons of water quality indicators and analysis of organic characteristics,it was found that the oxygen consumption capacity of domestic sewage was higher than that of industrial wastewater in the selected area of this study,and the oxygen-consuming substances of domestic sewage were small molecular amino acids.By comparing 20 conventional free amino acids,it was found that seven of them consumed oxygen easily,and compared with chemical oxygen consumption,biological oxygen consumption was in a leading position.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2008BAJ12B05-05)the Research Foundation of Education Bureau of Heilongjiang Province,China(No.11551114)the China Postdoctoral Science Foundation(No.20100471438).
文摘Aiming to resolve the problem that conventional sewage source heat pump systems cannot satisfy heat peak loads of buildings,a new idea that the freezing latent heat is exacted as the auxiliary heat source at the peak heat load is proposed.First,on the basis of sewage characteristics,a freezing latent heat exchanger is developed to safely eliminate ice,continuously extract heat and remove sewage soft-dirt.A reasonable form of the urban sewage source heat pump system with freezing latent heat collection is presented.Then,the feasibility of the system is theoretically analyzed.The calculation results under typical operating conditions show that the heating ability of the new system is higher than that of the conventional one and the ratio of these two highest heating rates is between 4.5 and 8.7,which proves that the new system has great application potential in cold regions.
基金Supported by Subtopic of New Countryside Sewage Comprehensive Treatment Demonstration Project of Beijing Science and Technology Plans (D07040600770701-8 D08040600580803) ~~
文摘A pilot test is carried out to treat Beijing suburb campus sewage by using integrated constructed wetland system, which combines three systems that are multi-level complex constructed wetland system, buried integration pretreatment system and wetland landscape system. Results show that the integrated system has a good pollutant removal efficiency: COD is mainly removed in the integration pretreatment system with an average removal rate of 96.87%; as NH4-N, TN and TP are mainly removed in the multi-level complex constructed wetland system, the average concentrations in effluent of COD, NH4-N, TN and TP are 45.58, 19.51, 31.9 and 1.49 mg/L, respectively; the Wetland landscape system also plays a role of depth processing, as the average concentrations in effluent of COD, NH4-N and TP are 13.33, 0.34 and 0.53 mg/L, respectively.
基金financially supported by the National Natural Science Foundation of China (50779078)
文摘Chlorination has been recognized as an efficient and economically favorable method for treating clogging in drip emitters caused by biological growth during sewage application. Further important criteria for determining an optimal chlorination scheme are the different responses of crops to the chloride added into the soil through chlorination. During two seasons in 2008 and 2009, field experiments were conducted in a solar-heated greenhouse with drip irrigation systems applying secondary sewage effluent to tomato plants to investigate the influences of chlorine injection intervals and levels on plant growth, yield, fruit quality, and emitter clogging. Injection intervals ranging from 2 to 8 wk and injection concentrations ranging 2-50 mg L-1 of free chlorine residual at the end of the laterals were used. For the 2008 experiments, the yield from the treatments of sewage application with chlorination was 7.5% lower than the yield from the treatment of sewage application without chlorination, while the yields for the treatments with and without chlorination were similar for the 2009 experiments. The statistical tests indicated that neither the chlorine injection intervals and concentrations nor the interactions between the two significantly influenced plant height, leaf area, or tomato yield for both years. The qualities of the fruit in response to chlorination were parameter-dependent. Chlorination did not significantly influence the quality of ascorbic acid, soluble sugar, or soluble acids, but the interaction between the chlorine injection interval and the chlorine concentration significantly influenced the levels of soluble solids. It was also confirmed that chlorination was an effective method for reducing biological clogging. These results suggested that chlorination is safe for a crop that has a moderate sensitivity to chlorine, like tomato, and can maintain a high level of performance in drip irrigation systems applying sewage effluent.
基金the National Key Research and Development Program of China (2016YFD0800406) for financial support
文摘A long-term field experiment was carried out with a wheat-maize rotation system to investigate the accumulation and bioavailability of heavy metals in a calcareous soil at different rates of sewage sludge amendment. There are significant linear correlations between the contents of Hg, Zn, Cu, Pb, and Cd in soil and sewage sludge amendment rates. By increasing 1 ton of applied sludge per hectare per year in soil, the contents of Hg, Zn, Cu, Pb, and Cd in soil increased by 6.20, 619, 92.9, 49.2, and 0.500 μg kg–1, respectively. For Hg, sewage sludge could be safely applied to the soil for 18 years at an application rate of 7.5 t ha–1 before content exceeded the soil environmental quality standards in China(1 mg kg–1). The safe application period for Zn is 51 years and is even longer for other heavy metals(112 years for Cu, 224 years for Cd, and 902 years for Pb) at an application rate of 7.5 t ha–1 sewage sludge. The contents of Zn and Ni in wheat grains and Zn, Cu, and Cr in maize grains increased linearly with increasing sewage sludge amendment rates. The contents of Zn, Cr, and Ni in wheat straws and Zn, Cu, and As in maize straws were positively correlated with sewage sludge amendment rates, while the content of Cu in wheat straws and Cr in maize straws showed the opposite trend. The bioconcentration factors of the heavy metals in wheat and maize grains were found to be in the order of Zn>Cu>Cd>Hg>Cr=Ni>Pb>As. Furthermore, the bioconcentration factors of heavy metals in wheat were greater than those in maize, indicating that wheat is more sensitive than maize as an indicator plant. These results will be helpful in developing the critical loads for sewage sludge amendment in calcareous soils.
基金supported by the National Natural Science Foundation of China(Grant No.51108275)the Program for Liaoning Excellent Talents in Universities(LNET)(Grant No.LJQ2012101)+2 种基金the Program for New Century Excellent Talents in Universities(Grant No.NCET-11-1012)the Science and Technology Program of Liaoning Province(Grants No.2011229002 and2013229012)the Basic Science Research Fund in Northeastern University(Grants No.N130501001 and N140105003)
文摘In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.
文摘Turtle-breeding wastewater and domestic fecal sewage were treated by means of soil cultivating system. Results indicated that more than 50% CODCr and BOD5, of wastewaters were removed, removal rates of NH4+ -N could reach about 70%-80%, but PO43- could not be removed. The thesis analyzed functional mechanisms for pollutants and put forward main elements affecting treatment efficiencies, thus provided conditions for further research.
文摘[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dosing lime and influence of the constraint factor were stud- ied. [ Result] Lime precipitation method treating high-concentration phosphorus wastewater could not only decline cost of phosphorus removal by chemical method, but also reach better treatment effect under suitable stirring and precipitation conditions by controlling alkalinity and pH. Phosphor- us content of chemical sludge after treatment could reach 9% -12%, with higher recyclable value. E Conclusion] Lime method treating phosphorus- rich sewage was more economic than low-concentration phosphorus sewage, and had very great potential for recycling phosphorus.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50578048)
文摘To confirm the rheological characteristic of sewage in the research and application of urban sewage source heat pump system, the viscosity of sewage was investigated. The tube-type rheometer was used in this experimental study, and the sewage was treated as homogeneous non-Newtonian fluid. In addition, the relational expression between viscosity parameters was developed, and the function of apparent viscosity was obtained. It is concluded that the viscosity characteristic of sewage is influenced largely by complex mixture in sewage, and the sewage has the characteristic of sheared densification fluid.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09+1 种基金2006BAJ02A13-4) supported by the National Key Technologies R&D ProgramProject(2006BAJ01A06-3) supported by the Key R & D Program during the Eleventh Five-Year Plan Period,China
文摘A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.
基金funded by the projects of the Major Program of National Natural Science Foundation of China(52091543)Tsinghua University Spring Breeze Fund(20213080026)the Chinese Academy of Engineering(2020-ZD-15).
文摘The rapid spread of the coronavirus disease(COVID-19)pandemic in over 200 countries poses a substantial threat to human health.Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which causes COVID-19,can be discharged with feces into the drainage system.However,a comprehensive understanding of the occurrence,presence,and potential transmission of SARS-CoV-2 in sewers,especially in community sewers,is still lacking.This study investigated the virus occurrence by viral nucleic acid testing in vent stacks,septic tanks,and the main sewer outlets of community where confirmed patients had lived during the early days of the epidemic in Wuhan,China.The results indicated that the risk of long-term emission of SARS-CoV-2 to the environment via vent stacks of buildings was low after confirmed patients were hospitalized.SARS-CoV-2 were mainly detected in the liquid phase,as opposed to being detected in aerosols,and its RNA in the sewage of septic tanks could be detected for only four days after confirmed patients were hospitalized.The surveillance of SARS-CoV-2 in sewage could be a sensitive indicator for the possible presence of asymptomatic patients in the community,though the viral concentration could be diluted more than ten times,depending on the sampling site,as indicated by the Escherichia coli test.The comprehensive investigation of the community sewage drainage system is helpful to understand the occurrence characteristics of SARS-CoV-2 in sewage after excretion with feces and the feasibility of sewage surveillance for COVID-19 pandemic monitoring.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50578048)
文摘To better remove the contamination on the surface of a heat-exchanger in urban sewage source heat pump system (USSHPS), this paper analyzes the feasibility of strong self-flushing on the basis of experiments and presents a new on-line self-flushing technique, which alternately flushes part of heat transfer tubes. In addition, operation principles and the structure of the new heat-exchanger are introduced and the feasible economi- cal and technological cleaning plans are given by design calculation and scheme comparison. The result shows that keeping each tube washed for one minute with 5 m/s, the operating cost is lower than ¥5 and when one flushing pump ahemately flushes 10-20 heat exchangers, the saved costs of flushing 10 tubes alternately are over 4 times of the increased costs.
基金funded by the National Key Research and Development Project of China(2021YFC3200700)the Major Consulting Research Project of the Chinese Academy of Engineering(2019-ZD-33).
文摘1.Introduction The urban sewage treatment system,including sewage pipe networks and sewage treatment plants,is an important infrastructure to ensure urban social and economic operation.In the past few decades,due to the unremitting efforts of the Chinese government,the construction of China’s urban sewage treatment infrastructure has developed rapidly[1].
基金the Science and Technology Program Project of the Ministry of Housing and Urban-Rural Development“Research on Indoor Thermal Environment Based on Zero Energy Building Technology in Hot Summer and Cold Winter Area”(2017-K1-014)Hubei Provincial Natural Fund Youth Fund“Technology and Evaluation of Multi-energy Complementary Energy Supply for Rural Residential Buildings in Hubei”(2017CFB311).
文摘Based on the characteristics of sewage from beauty salons,a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditions of the system.The results show that with the increase of sewage temperature and flow,the performance of the system also increases.In summer conditions,the system provides cooling,recovers waste heat and condensed heat from sewage,with a COP value of 8.97;in winter conditions,the system heats and produces hot water,with a COP value of 2.44;in transitional seasons,only hot water is produced.The COP value is 2.75.Compared with the traditional systems which refers to the air source heat pump and hot water boiler system currently used in beauty salons,this system can save energy by 50.9%.
基金Sponsored by National Natural Science Foundation of China(41263006,2014BAC04B02)Program of Jiangxi Provincial Department of Science and Technology(20124ACB01200,20122BBG70086,20113BCB24017,20133ACF60005,20123BBF61150)Program of Jiangxi Academy of Science(JAS(2013)NO.19-06,2012-YYB-01,2013-XTPH1-14,2013H003)
文摘Pollution brought by rural domestic sewage has become increasingly serious, so it is imperative to fi gure out economical and efficient solutions. On the basis of comparison between rural domestic sewage treatment means in China and abroad, actual conditions of countryside, current situation and features of domestic sewage, this paper adopted the compound ecological wetland system consisting of anaerobic and aerobic units, ecological floating bed and artifi cial wetland, so as to remove nitrogen and phosphorus efficiently, achieve the goal of low operation and construction cost and less land use.
基金supported by the National Natural Science Foundation of China (NSFC) (No.41376123)the Youth Project of Shanxi Basic Research (Nos.20210302124317,201901D211383)+1 种基金the Research and Promotion Project of Water Conservancy Science and Technology in Shanxi Province (No.2023GM41)the Science and Technology Innovation Fund of Shanxi Agricultural University (No.2018YJ21)。
文摘Different from rivers in humid areas,the variability of riverine CO_(2) system in arid areas is heavily impacted by anthropogenic disturbance with the increasing urbanization and water withdrawals.In this study,the water chemistry and the controls of carbonate system in an urbanized river(the Fenhe River)on the semi-arid Loess Plateau were analyzed.The water chemistry of the river water showed that the high dissolved inorganic carbon(DIC)concentration(about 37 mg L^(-1))in the upstream with a karst land type was mainly sourced from carbonate weathering involved by H_(2)CO_(3) and H_(2)SO_(4),resulting in an oversaturated partial pressure of CO_(2)(pCO_(2))(about 800μatm).In comparison,damming resulted in the widespread appearance of non-free flowing river segments,and aquatic photosynthesis dominated the DIC and pCO_(2) spatiality demonstrated by the enriched stable isotope of DIC(δ^(13)CDIC).Especially in the mid-downstream flowing through major cities in warm and low-runoff August,some river segments even acted as an atmospheric CO_(2) sink.The noteworthy is wastewater input leading to a sudden increase in DIC(>55 mg L^(-1))and pCO_(2)(>4500μatm)in the downstream of Taiyuan City,and in cold November the increased DIC even extended to the outlet of the river.Our results highlight the effects of aquatic production induced by damming and urban sewage input on riverine CO_(2) system in semi-arid areas,and reducing sewage discharge may mitigate CO_(2) emission from the rivers.
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.
基金Supported by the 2023 Central Government Finance Subsidy Project for Liaoning Fisheries,the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ20220091)the National Natural Science Foundation of China(No.31872609)+1 种基金the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)the earmarked fund for CARS-49。
文摘To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.