Using a plexiglass sample and by means of real-time holographic interferometry and shadow optical method of caustics, the different features of dynamic variation in stress (strain) field, plastic area and nucleation z...Using a plexiglass sample and by means of real-time holographic interferometry and shadow optical method of caustics, the different features of dynamic variation in stress (strain) field, plastic area and nucleation zone (shadow area) when the sample fractures during loading (loading-fracture) and unloading (unloading-fracture) are studied visually. The results show that the strain nuclei (zones with dense fringes) appear first at the tips of prefabricated cracks at low stress, and then the shadow areas of caustics form with the increase of load. These nuclei and shadow areas can become larger, or smaller, when the process of loading, or unloading, goes on. When the stress is kept within a certain range, the shadow areas of caustics can become larger and smaller alternatively with repeated loading and unloading (cyclic loading). However, when loading and unloading at high stress, in particular when the macrofracture is about to appear, the variations of the shadow areas of caustics are irreversible and quite different. The shadow areas of caustics expand rapidly at an increasing speed when loading-fracture appears. In contrast, the shadow areas of caustics expand at a lower speed when unloading-fracture appears; besides, there is a circular shadow in front of the sharp-angle shaped area.展开更多
山体滑坡会导致生命和财产损失,获取完整的滑坡空间分布图及对易发区域的准确判定有利于指导生产、生活和生态空间优化。在滑坡调查过程中,茂密的植被覆盖使滑坡调查难度加大,机载激光雷达(light detection and ranging,LiDAR)技术的穿...山体滑坡会导致生命和财产损失,获取完整的滑坡空间分布图及对易发区域的准确判定有利于指导生产、生活和生态空间优化。在滑坡调查过程中,茂密的植被覆盖使滑坡调查难度加大,机载激光雷达(light detection and ranging,LiDAR)技术的穿透能力使真实地形特征得以呈现,从而实现植被茂密区滑坡识别。该文通过仿地飞行获取研究区LiDAR点云数据,基于点云数据得到数字高程模型(digital elevation model,DEM),在山体阴影分析、彩色增强显示及三维场景模拟基础上,识别出区域内已有滑坡的位置与规模,经野外核实,滑坡解译精度为86.4%。针对滑坡易发区评价问题,以现有滑坡为样本,首次采用遥感分类思维开展滑坡易发区划定,采用小区域内与滑坡发育有关的高程、坡度和地表起伏度组合成影像,以支持向量机为分类方法,判定出滑坡易发区域,经滑坡检验样本分析,滑坡识别精度为81.91%。研究表明:基于高精度的LiDAR数据及其视觉增强后的图像能识别小型滑坡,采用支持向量机分类法可以准确确定滑坡易发区,为下一步三生空间规划与优化提供依据。展开更多
基金Key project from China Seismological Bureau (9691309020301)and State Natural Sciences Foundation of China (19732060 and 46764010
文摘Using a plexiglass sample and by means of real-time holographic interferometry and shadow optical method of caustics, the different features of dynamic variation in stress (strain) field, plastic area and nucleation zone (shadow area) when the sample fractures during loading (loading-fracture) and unloading (unloading-fracture) are studied visually. The results show that the strain nuclei (zones with dense fringes) appear first at the tips of prefabricated cracks at low stress, and then the shadow areas of caustics form with the increase of load. These nuclei and shadow areas can become larger, or smaller, when the process of loading, or unloading, goes on. When the stress is kept within a certain range, the shadow areas of caustics can become larger and smaller alternatively with repeated loading and unloading (cyclic loading). However, when loading and unloading at high stress, in particular when the macrofracture is about to appear, the variations of the shadow areas of caustics are irreversible and quite different. The shadow areas of caustics expand rapidly at an increasing speed when loading-fracture appears. In contrast, the shadow areas of caustics expand at a lower speed when unloading-fracture appears; besides, there is a circular shadow in front of the sharp-angle shaped area.