According to the theoretical analysis and calculation on the base ofcontinuous mass system, the simulation experimental investigation on active control of torsionalvibration in a turbogenerator shaft system is conduct...According to the theoretical analysis and calculation on the base ofcontinuous mass system, the simulation experimental investigation on active control of torsionalvibration in a turbogenerator shaft system is conducted. A test installation with the excitation ofgenerator motor and multi-stepped shaft system is established to simulate the torsional vibration ofa turbogenerator rotor shaft system, and to examine the active control strategy presented. Someuseful results are reached in the experimental study.展开更多
To investigate the repeated frequency condition (RFC) for torsional vibration of shafts' system, the transfer matrix method was adopted. Firstly, the transfer relationship from the boundary to engaging disks of do...To investigate the repeated frequency condition (RFC) for torsional vibration of shafts' system, the transfer matrix method was adopted. Firstly, the transfer relationship from the boundary to engaging disks of double shafts' system (DSS) was constructed. Secondly, the RFC of DSS was deduced out and the methods to select mode shape were presented. Finally, the relationship was extended to multilevel transmission system (MTS), and the RFC of this system was explored. The conclusions is this: 1) the necessary RFC requires the existence of joint engaging couple (JEC); 2) for DSS, the sufficient is the number of boundary transfer factors (f(B)) larger than 2; 3) the whale system can be split into independent groups, the total multiplicity is the sum of independent solution number of every group, the latter is the number of independent f(B), = 0 inside the group minus 1.展开更多
In this study, the influence of geometrical parameters on the curve veering phenomenon in a tor-sional system with stepped shaft is investigated. Three approximate solutions including finite el-ement, Rayleigh-Ritz an...In this study, the influence of geometrical parameters on the curve veering phenomenon in a tor-sional system with stepped shaft is investigated. Three approximate solutions including finite el-ement, Rayleigh-Ritz and discretization methods, along with an exact solution are employed to obtain the natural frequencies of the structure. The study reveals that, under specific circumstances, the results obtained by approximate methods are very close to the exact solution. The curve veering behavior is manifested irrespective of the method employed. It is concluded that for the structure studied the curve veering behavior is not because of the approximate techniques used to compute the natural frequencies, and is an inherent behavior of the structure.展开更多
传统线性减振器在抑制内燃机轴系的扭转振动方面有着长期的应用,但较窄的减振带宽限制了其性能的发挥.考虑到内燃机闭环轴系的周期性激振力随转速的变化而变化,其在相对较宽的频率域内实现高效的减振十分必要.为了探究非线性能量阱(nonl...传统线性减振器在抑制内燃机轴系的扭转振动方面有着长期的应用,但较窄的减振带宽限制了其性能的发挥.考虑到内燃机闭环轴系的周期性激振力随转速的变化而变化,其在相对较宽的频率域内实现高效的减振十分必要.为了探究非线性能量阱(nonlinear energy sink,NES)替代调谐质量阻尼器(tuned mass damper,TMD)抑制曲轴扭转振动的可行性,文章将建立曲轴的多惯量非线性闭环自激耦合振荡模型,在此基础上,研究TMD和NES对闭环曲轴扭振减振的影响规律.分析过程综合考虑了轴系不同轴段位置的瞬态和稳态扭转振动.除此之外,定义了振动密度,性能领先效率和波动率3种函数综合考虑不同动力吸振器(dynamic vibration absorber,DVA)的性能优劣.讨论了NES和TMD在不同的设计参数下(变刚度、变阻尼和变位置排布)的减振效率和鲁棒性.结果表明,NES和TMD控制曲轴扭振时具有不同的刚度及阻尼失效区间.随着设计参数的变化,NES和TMD的减振性能交替领先,NES的综合性能领先了24.5%,TMD的综合性能领先了3.3%.同时,NES具有较高的阻尼依赖性(13.6%),TMD具有较高的刚度(3.6%)及位置依赖性(25.6%).展开更多
基金This project is supported by National Natural Science Foundation of China (No.59575015) Education Ministry of China.
文摘According to the theoretical analysis and calculation on the base ofcontinuous mass system, the simulation experimental investigation on active control of torsionalvibration in a turbogenerator shaft system is conducted. A test installation with the excitation ofgenerator motor and multi-stepped shaft system is established to simulate the torsional vibration ofa turbogenerator rotor shaft system, and to examine the active control strategy presented. Someuseful results are reached in the experimental study.
文摘To investigate the repeated frequency condition (RFC) for torsional vibration of shafts' system, the transfer matrix method was adopted. Firstly, the transfer relationship from the boundary to engaging disks of double shafts' system (DSS) was constructed. Secondly, the RFC of DSS was deduced out and the methods to select mode shape were presented. Finally, the relationship was extended to multilevel transmission system (MTS), and the RFC of this system was explored. The conclusions is this: 1) the necessary RFC requires the existence of joint engaging couple (JEC); 2) for DSS, the sufficient is the number of boundary transfer factors (f(B)) larger than 2; 3) the whale system can be split into independent groups, the total multiplicity is the sum of independent solution number of every group, the latter is the number of independent f(B), = 0 inside the group minus 1.
文摘In this study, the influence of geometrical parameters on the curve veering phenomenon in a tor-sional system with stepped shaft is investigated. Three approximate solutions including finite el-ement, Rayleigh-Ritz and discretization methods, along with an exact solution are employed to obtain the natural frequencies of the structure. The study reveals that, under specific circumstances, the results obtained by approximate methods are very close to the exact solution. The curve veering behavior is manifested irrespective of the method employed. It is concluded that for the structure studied the curve veering behavior is not because of the approximate techniques used to compute the natural frequencies, and is an inherent behavior of the structure.
文摘传统线性减振器在抑制内燃机轴系的扭转振动方面有着长期的应用,但较窄的减振带宽限制了其性能的发挥.考虑到内燃机闭环轴系的周期性激振力随转速的变化而变化,其在相对较宽的频率域内实现高效的减振十分必要.为了探究非线性能量阱(nonlinear energy sink,NES)替代调谐质量阻尼器(tuned mass damper,TMD)抑制曲轴扭转振动的可行性,文章将建立曲轴的多惯量非线性闭环自激耦合振荡模型,在此基础上,研究TMD和NES对闭环曲轴扭振减振的影响规律.分析过程综合考虑了轴系不同轴段位置的瞬态和稳态扭转振动.除此之外,定义了振动密度,性能领先效率和波动率3种函数综合考虑不同动力吸振器(dynamic vibration absorber,DVA)的性能优劣.讨论了NES和TMD在不同的设计参数下(变刚度、变阻尼和变位置排布)的减振效率和鲁棒性.结果表明,NES和TMD控制曲轴扭振时具有不同的刚度及阻尼失效区间.随着设计参数的变化,NES和TMD的减振性能交替领先,NES的综合性能领先了24.5%,TMD的综合性能领先了3.3%.同时,NES具有较高的阻尼依赖性(13.6%),TMD具有较高的刚度(3.6%)及位置依赖性(25.6%).