Salinity is a crucial property of water body and is essential for the restoration of paleoecology and paleoenvironment.However,the theoretical method of application of elemental geochemical proxies to paleosalinity re...Salinity is a crucial property of water body and is essential for the restoration of paleoecology and paleoenvironment.However,the theoretical method of application of elemental geochemical proxies to paleosalinity reconstruction is still underdeveloped.Moreover,accurate determination and reconstruction of paleosalinity and its variation in an offshore lacustrine basin have been extremely challenging thus far.This study presents detailed elemental geochemical investigations from the Zhanhua Sag in the southern Bohai Bay Basin to reconstruct the salinity variation in the Paleogene Eocene Shahejie Formation(50.8-33.9 Ma).Based on the variation of strontium barium ratio(Sr/Ba)and boron gallium ratio(B/Ga),we determined three typical salinity types of water body:salty water(Sr/Ba>0.5,B/Ga>6),brackish water(0.2<Sr/Ba<0.5,3<B/Ga<6),and fresh water(Sr/Ba<0.2,B/Ga<3),after eliminating carbonate-sourced strontium(Sr).The salinity values following Couch’s paleosalinometer r anged from 3.1 to 11.9,reflecting the overall characteristics of oligohaline(0.5<salinity value<5)to mesohaline(5<salinity value<18)brackish water.All proxies yielded similar trends in paleosalinity variation,demonstrating a clear trend of rising and then declining from 50.8 Ma to 33.9 Ma.We considered that the B/Ga ratio had the highest reliability and resolution in determining the salinity types of water body in the study area.The environmental factors causing paleosalinity variation were also thoroughly analysed based on the temporal relationship among the salinity types of watermasses,paleoclimate characteristics from pollen records,and marine transgression events from marine fossils.Our research established a model of paleoclimatic and eustatic mechanisms to explain paleosalinity variation,providing reasonable and integral driving forces for the salinity variation of all offshore lacustrine basins.展开更多
Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to inves...Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.展开更多
Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formatio...Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formation carbonate-rich shale in the Jiyang Depression were analyzed, and the organic matter abundance, reservoir properties, and oil-bearing properties of different laminae were compared. Typical shale storage-seepage structures were classified, and the mobility of oil in different types of shale storage-seepage structure was compared. The results show that the repeated superposition of mud laminae and calcite laminae are the main layer structure of carbonate-rich shales. The calcite laminae are divided into micritic calcite laminae, sparry calcite laminae and fibrous calcite vein. The mud-rich laminae are the main contributor to the organic matter abundance and porosity of shale, with the best hydrocarbon generation potential, reservoir capacity, and oil-bearing property. The micritic calcite laminae also have relatively good hydrocarbon generation potential, reservoir capacity and oil-bearing property. The sparry calcite laminae and fibrous calcite vein have good permeability and conductivity. Four types of shale storage-seepage structure are developed in the carbonate-rich shale, and the mobility of oil in each type of storage-seepage structure is in descending order: sparry calcite laminae enriched shale storage-seepage structure, mixed calcite laminae enriched shale storage-seepage structure, fibrous calcite vein enriched shale storage-seepage structure, and micritic calcite laminae enriched shale storage-seepage structure. The exploration targets of carbonate-rich shale in the Jiyang Depression Shahejie Formation are different in terms of storage-seepage structure at different thermal evolution stages.展开更多
The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-ric...The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-rich sediments in lacustrine facies.This article unravels the mineralogy,geochemistry,and paleoenvironmental evolution during the deposition of the Paleogene Shahejie Formation(Es_(3)^(L)).It discusses the effects of paleoclimate,paleosalinity,paleoredox conditions,paleowater depth,and paleoproductivity on organic matter(OM)enrichment.Finally,the OM enrichment model was established.The results show that the mineralogical compositions are mainly composed of calcite(avg.40.13%),quartz(avg.21.64%)and clay minerals(avg.24.07%),accompanied by dolomite(avg.7.07%),feldspar(avg.6.36%)and pyrite(avg.2.95%).The Es_(3)^(L) shale has a high abundance of OM,with total organic carbon(TOC)ranging from 1.07%to 5.12%.The organic matter type is mainly composed of type I-II_(1) kerogen,which is generally considered a good-quality source rock.The source of OM is a mixture of lower bacteria,algae,and plants.During the early sedimentary period,the paleoclimate was dry and cold,with high salinity,intense reducibility,and relatively low productivity.During the late sedimentary period,the climate became warmer and more humid.As a result,the salinity decreased to a level that was suitable for biological reproduction,and productivity increased gradually due to the input of terrigenous plants.Paleosalinity and paleoclimate determined the environment of the sedimentary period,in addition,paleoproductivity and paleoredox condition indicated the formation and preservation conditions of OM.The warm and humid climate,brackish water,suitable reduction conditions and high productivity are the favorable conditions for the generation and preservation of organic matter.The research results may have implications for the genetic mechanisms of organic matter accumulation.They will provide theoretical and technical insights into the exploration and development of shale oil.展开更多
Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the o...Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China.展开更多
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bo...Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM) model. Firstly, bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs) within 24 hours.Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cyc...Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.展开更多
The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well...The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with ...Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.展开更多
Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ...Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.展开更多
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nan...Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nanopores are found in the anodic films formed in the electrolytes after high-temperature storage(HTS)at 130°C for 240 h.A comparison of the voltage-time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes.FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures.Combining the electronic current theory and oxygen bubble mold effect,the change in electrolyte composition could increase the electronic current in the anodizing process.The electronic current decreases the formation efficiency of anodic oxide films,and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films.The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.展开更多
The oil and gas exploration of the Middle and Lower Cambrian in the Tarim Basin reveals widely distributed source rocks with the Yuertusi Formation being recognized as high-quality source rocks that are distributed in...The oil and gas exploration of the Middle and Lower Cambrian in the Tarim Basin reveals widely distributed source rocks with the Yuertusi Formation being recognized as high-quality source rocks that are distributed in a rather small range.The Xiaoerbulake Formation that is right under the Yuertusi Formation has also been eyed as potential high-quality source rocks and is studied through analyses focusing on the stratigraphic development,the abundance,type,and maturity of organic matter,and the paleoproductivity of a dark-colored algae dolomite within the formation.The results show that the dolomite is rich in organic matter of mainly types Ⅰ and Ⅱ kerogens.Although reached the high mature to over-mature stage,the dolomite was deposited in an anoxic sedimentary environment featuring a high paleoproductivity level and a high organic carbon burial efficiency,quite favorable for the development of high-quality source rocks.The study provides material evidence to the Middle-Lower Cambrian subsalt source rock-reservoir-caprock combination model for the Tarim Basin.展开更多
Superthin galaxies are observed to have stellar disks with extremely small minor-to-major axis ratios.In this work,we investigate the formation of superthin galaxies in the TNG100 simulation.We trace the merger histor...Superthin galaxies are observed to have stellar disks with extremely small minor-to-major axis ratios.In this work,we investigate the formation of superthin galaxies in the TNG100 simulation.We trace the merger history and investigate the evolution of galaxy properties of a selected sample of superthin galaxies and a control sample of galaxies that share the same joint probability distribution in the stellar-mass and color diagram.Through making comparisons between the two galaxy samples,we find that present-day superthin galaxies had similar morphologies as the control sample counterparts at higher redshifts,but have developed extended flat“superthin”morphologies since z~1.During this latter evolution stage,superthin galaxies undergo an overwhelmingly higher frequency of prograde mergers(with orbit-spin angleθ_(orb)≤40°).Accordingly the spins of their dark matter halos have grown significantly and become noticeably higher than those of their normal disk counterparts.This further results in the buildup of their stellar disks at larger distances much beyond the regimes of normal disk galaxies.We also discuss the formation scenario of those superthin galaxies that live in larger dark matter halos as satellite galaxies therein.展开更多
基金Supported by the National Natural Science Foundation of China(No.42272110)。
文摘Salinity is a crucial property of water body and is essential for the restoration of paleoecology and paleoenvironment.However,the theoretical method of application of elemental geochemical proxies to paleosalinity reconstruction is still underdeveloped.Moreover,accurate determination and reconstruction of paleosalinity and its variation in an offshore lacustrine basin have been extremely challenging thus far.This study presents detailed elemental geochemical investigations from the Zhanhua Sag in the southern Bohai Bay Basin to reconstruct the salinity variation in the Paleogene Eocene Shahejie Formation(50.8-33.9 Ma).Based on the variation of strontium barium ratio(Sr/Ba)and boron gallium ratio(B/Ga),we determined three typical salinity types of water body:salty water(Sr/Ba>0.5,B/Ga>6),brackish water(0.2<Sr/Ba<0.5,3<B/Ga<6),and fresh water(Sr/Ba<0.2,B/Ga<3),after eliminating carbonate-sourced strontium(Sr).The salinity values following Couch’s paleosalinometer r anged from 3.1 to 11.9,reflecting the overall characteristics of oligohaline(0.5<salinity value<5)to mesohaline(5<salinity value<18)brackish water.All proxies yielded similar trends in paleosalinity variation,demonstrating a clear trend of rising and then declining from 50.8 Ma to 33.9 Ma.We considered that the B/Ga ratio had the highest reliability and resolution in determining the salinity types of water body in the study area.The environmental factors causing paleosalinity variation were also thoroughly analysed based on the temporal relationship among the salinity types of watermasses,paleoclimate characteristics from pollen records,and marine transgression events from marine fossils.Our research established a model of paleoclimatic and eustatic mechanisms to explain paleosalinity variation,providing reasonable and integral driving forces for the salinity variation of all offshore lacustrine basins.
基金Supported by the Basic Science Research Fund Project of PetroChina Affiliated Institute(2020D-5008-06)。
文摘Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.
基金Supported by the China National Science and Technology Major Project(2017ZX05049-004)Sinopec Project(P22083,P23084).
文摘Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formation carbonate-rich shale in the Jiyang Depression were analyzed, and the organic matter abundance, reservoir properties, and oil-bearing properties of different laminae were compared. Typical shale storage-seepage structures were classified, and the mobility of oil in different types of shale storage-seepage structure was compared. The results show that the repeated superposition of mud laminae and calcite laminae are the main layer structure of carbonate-rich shales. The calcite laminae are divided into micritic calcite laminae, sparry calcite laminae and fibrous calcite vein. The mud-rich laminae are the main contributor to the organic matter abundance and porosity of shale, with the best hydrocarbon generation potential, reservoir capacity, and oil-bearing property. The micritic calcite laminae also have relatively good hydrocarbon generation potential, reservoir capacity and oil-bearing property. The sparry calcite laminae and fibrous calcite vein have good permeability and conductivity. Four types of shale storage-seepage structure are developed in the carbonate-rich shale, and the mobility of oil in each type of storage-seepage structure is in descending order: sparry calcite laminae enriched shale storage-seepage structure, mixed calcite laminae enriched shale storage-seepage structure, fibrous calcite vein enriched shale storage-seepage structure, and micritic calcite laminae enriched shale storage-seepage structure. The exploration targets of carbonate-rich shale in the Jiyang Depression Shahejie Formation are different in terms of storage-seepage structure at different thermal evolution stages.
基金supported by the National Natural Science Foundation of China(No.42272110)。
文摘The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-rich sediments in lacustrine facies.This article unravels the mineralogy,geochemistry,and paleoenvironmental evolution during the deposition of the Paleogene Shahejie Formation(Es_(3)^(L)).It discusses the effects of paleoclimate,paleosalinity,paleoredox conditions,paleowater depth,and paleoproductivity on organic matter(OM)enrichment.Finally,the OM enrichment model was established.The results show that the mineralogical compositions are mainly composed of calcite(avg.40.13%),quartz(avg.21.64%)and clay minerals(avg.24.07%),accompanied by dolomite(avg.7.07%),feldspar(avg.6.36%)and pyrite(avg.2.95%).The Es_(3)^(L) shale has a high abundance of OM,with total organic carbon(TOC)ranging from 1.07%to 5.12%.The organic matter type is mainly composed of type I-II_(1) kerogen,which is generally considered a good-quality source rock.The source of OM is a mixture of lower bacteria,algae,and plants.During the early sedimentary period,the paleoclimate was dry and cold,with high salinity,intense reducibility,and relatively low productivity.During the late sedimentary period,the climate became warmer and more humid.As a result,the salinity decreased to a level that was suitable for biological reproduction,and productivity increased gradually due to the input of terrigenous plants.Paleosalinity and paleoclimate determined the environment of the sedimentary period,in addition,paleoproductivity and paleoredox condition indicated the formation and preservation conditions of OM.The warm and humid climate,brackish water,suitable reduction conditions and high productivity are the favorable conditions for the generation and preservation of organic matter.The research results may have implications for the genetic mechanisms of organic matter accumulation.They will provide theoretical and technical insights into the exploration and development of shale oil.
基金the financial support from the National Natural Science Foundation of China(42172151,42090025,41811530094,and 41625009)the China Postdoctoral Science Foundation(2021M690204)the National Key Research and Development Program(2019YFA0708504&2023YFF0806200)。
文摘Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China.
基金supported in part by National Natural Science Foundation of China(32271364 & 31971240)Interdisciplinary innovation project from West China Hospital of Stomatology, Sichuan University(RD-03-202305)。
文摘Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM) model. Firstly, bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs) within 24 hours.Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
基金fellowship support from the China Scholarship Council
文摘Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.
基金financial support from the National Key Research and Development Program of China(2019YFC0605502)the National Natural Science Foundation of China(42302156)+1 种基金the Major Projects of Petro China Science and Technology Fund(2021DJ0206)the Natural Science Foundation of China University of Petroleum(22CX06046A)。
文摘The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金Supported by the National Natural Science Foundation of China(41802177,42272188)PetroChina Basic Technology Research and Development Project(2021DJ0206,2022DJ0507)Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04).
文摘Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.
基金Supported by the CNOOC Major Technology Project During the 14th FIVE-YEAR PLAN PERIOD(KJGG2022-0403)CNOOC Major Technology Project(KJZH-2021-0003-00).
文摘Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金financially supported by the National Natural Science Foundation of China(Nos.51777097,51577093)。
文摘Constant-current anodization of pure aluminum was carried out in non-corrosive capacitor working electrolytes to study the formation mechanism of nanopores in the anodic oxide films.Through comparative experiments,nanopores are found in the anodic films formed in the electrolytes after high-temperature storage(HTS)at 130°C for 240 h.A comparison of the voltage-time curves suggests that the formation of nanopores results from the decrease in formation efficiency of anodic oxide films rather than the corrosion of the electrolytes.FT-IR and UV spectra analysis shows that carboxylate and ethylene glycol in electrolytes can easily react by esterification at high temperatures.Combining the electronic current theory and oxygen bubble mold effect,the change in electrolyte composition could increase the electronic current in the anodizing process.The electronic current decreases the formation efficiency of anodic oxide films,and oxygen bubbles accompanying electronic current lead to the formation of nanopores in the dense films.The continuous electronic current and oxygen bubbles are the prerequisites for the formation of porous anodic oxides rather than the traditional field-assisted dissolution model.
文摘The oil and gas exploration of the Middle and Lower Cambrian in the Tarim Basin reveals widely distributed source rocks with the Yuertusi Formation being recognized as high-quality source rocks that are distributed in a rather small range.The Xiaoerbulake Formation that is right under the Yuertusi Formation has also been eyed as potential high-quality source rocks and is studied through analyses focusing on the stratigraphic development,the abundance,type,and maturity of organic matter,and the paleoproductivity of a dark-colored algae dolomite within the formation.The results show that the dolomite is rich in organic matter of mainly types Ⅰ and Ⅱ kerogens.Although reached the high mature to over-mature stage,the dolomite was deposited in an anoxic sedimentary environment featuring a high paleoproductivity level and a high organic carbon burial efficiency,quite favorable for the development of high-quality source rocks.The study provides material evidence to the Middle-Lower Cambrian subsalt source rock-reservoir-caprock combination model for the Tarim Basin.
基金supported by the National Key Research Development Program of China(grant Nos.2022YFA1602902 and 2022YFA1602903)。
文摘Superthin galaxies are observed to have stellar disks with extremely small minor-to-major axis ratios.In this work,we investigate the formation of superthin galaxies in the TNG100 simulation.We trace the merger history and investigate the evolution of galaxy properties of a selected sample of superthin galaxies and a control sample of galaxies that share the same joint probability distribution in the stellar-mass and color diagram.Through making comparisons between the two galaxy samples,we find that present-day superthin galaxies had similar morphologies as the control sample counterparts at higher redshifts,but have developed extended flat“superthin”morphologies since z~1.During this latter evolution stage,superthin galaxies undergo an overwhelmingly higher frequency of prograde mergers(with orbit-spin angleθ_(orb)≤40°).Accordingly the spins of their dark matter halos have grown significantly and become noticeably higher than those of their normal disk counterparts.This further results in the buildup of their stellar disks at larger distances much beyond the regimes of normal disk galaxies.We also discuss the formation scenario of those superthin galaxies that live in larger dark matter halos as satellite galaxies therein.