Objective The Shangxu gold deposit is located in the south of the middle Bangong-Nujiang suture zone in northern Tibet. The origin of this deposit as an orogenic gold deposit is debatable. The study of the Shangxu de...Objective The Shangxu gold deposit is located in the south of the middle Bangong-Nujiang suture zone in northern Tibet. The origin of this deposit as an orogenic gold deposit is debatable. The study of the Shangxu deposit has a profound implication on gold exploration in the Bangong- Nujiang metallogenic belt and can also improve our understanding of gold mineralization in northern Tibet.展开更多
As a typical orogenic gold deposit in Tibet,Shangxu gold deposit is located at the Bangong Lake–Nujiang River Metallogenic Belt in the south of Qinghai–Tibet Plateau.In this paper,zircon U-Pb dating,trace elements a...As a typical orogenic gold deposit in Tibet,Shangxu gold deposit is located at the Bangong Lake–Nujiang River Metallogenic Belt in the south of Qinghai–Tibet Plateau.In this paper,zircon U-Pb dating,trace elements and Hf isotopic analysis were performed on Au-bearing quartz veins in the Shangxu gold deposit.Zircons from Au-bearing quartz veins can be divided into three types:detrital,magmatic,and hydrothermal zircons.There are two age peaks in detrital zircons:ca.1700 Ma and ca.2400 Ma.There are two groups of concordant ages including 157±4 Ma(MSWD=0.69)and 120±1 Ma(MSWD=0.19)in magmatic zircons,in whichεH f(t)value of ca.120 Ma from the magmatic zircons range from+8.24 to+12.9.An age of 119±2 Ma(MSWD=0.42)was yielded from hydrothermal zircons,and theirεH f(t)values vary between+15.7 and+16.4.According to sericite Ar-Ar age,this paper suggests that an age of 119±2 Ma from hydrothermal zircons represent the formation age of the Shangxu gold Deposit,and its mineralization should be related to the collision between Lhasa Block and Qiangtang Block.The metallogenic age is basically the same as the diagenetic age of Mugagangri granite,andεH f(t)value of hydrothermal zircon is significantly higher than that of the contemporaneous magmatic zircon,which indicates that there is a genetic relationship between the gold mineralization and the deep crust-mantle magmatism.展开更多
基金supported by the National Natural Science Foundation of China(grant No.41320104004)the Ministry of Science and Technology of China(973 Project,grant No.2011CB403104)
文摘Objective The Shangxu gold deposit is located in the south of the middle Bangong-Nujiang suture zone in northern Tibet. The origin of this deposit as an orogenic gold deposit is debatable. The study of the Shangxu deposit has a profound implication on gold exploration in the Bangong- Nujiang metallogenic belt and can also improve our understanding of gold mineralization in northern Tibet.
基金financially supported by the National Natural Science Foundation of China(Grant No.91955208)the National Key Research and Development Program of China(Grant nos.2016YFC0600308 and 2018YFC0604103)a program of China Geological Survey(Grant No.DD2021392)。
文摘As a typical orogenic gold deposit in Tibet,Shangxu gold deposit is located at the Bangong Lake–Nujiang River Metallogenic Belt in the south of Qinghai–Tibet Plateau.In this paper,zircon U-Pb dating,trace elements and Hf isotopic analysis were performed on Au-bearing quartz veins in the Shangxu gold deposit.Zircons from Au-bearing quartz veins can be divided into three types:detrital,magmatic,and hydrothermal zircons.There are two age peaks in detrital zircons:ca.1700 Ma and ca.2400 Ma.There are two groups of concordant ages including 157±4 Ma(MSWD=0.69)and 120±1 Ma(MSWD=0.19)in magmatic zircons,in whichεH f(t)value of ca.120 Ma from the magmatic zircons range from+8.24 to+12.9.An age of 119±2 Ma(MSWD=0.42)was yielded from hydrothermal zircons,and theirεH f(t)values vary between+15.7 and+16.4.According to sericite Ar-Ar age,this paper suggests that an age of 119±2 Ma from hydrothermal zircons represent the formation age of the Shangxu gold Deposit,and its mineralization should be related to the collision between Lhasa Block and Qiangtang Block.The metallogenic age is basically the same as the diagenetic age of Mugagangri granite,andεH f(t)value of hydrothermal zircon is significantly higher than that of the contemporaneous magmatic zircon,which indicates that there is a genetic relationship between the gold mineralization and the deep crust-mantle magmatism.